
KIM T. CONSTANTIKES 

USING FRACTAL DIMENSION FOR TARGET DETECTION 
IN CLUTTER 

The detection of targets in natural backgrounds requires that we be able to compute some characteristic of 
target that is distinct from background clutter. We assume that natural objects are fractals and that the 
irregularity or roughness of the natural objects can be characterized with fractal dimension estimates. Since 
man-made objects such as aircraft or ships are comparatively regular and smooth in shape, fractal dimension 
estimates may be used to distinguish natural from man-made objects. 

INTRODUCTION 
Image processing associated with weapons systems is 

often concerned with methods to distinguish natural ob
jects from man-made objects. Infrared seekers in clut
tered environments need to distinguish the clutter of 
clouds or solar sea glint from the signature of the intend
ed target of the weapon. The discrimination of target 
from clutter falls into a category of methods generally 
called segmentation, which derives localized parameters 
(e.g.,texture) from the observed image intensity in order 
to discriminate objects from background. Essentially, one 
wants these parameters to be insensitive, or invariant, to 
the kinds of variation that the objects and background 
might naturally undergo because of changes in how they 
are illuminated or the vantage point from which they are 
viewed. 

Fractal dimension is one such parameter; if an object 
is fractal, it looks like a fractal from a variety of perspec
tives. The characterization is rooted in physical first prin
ciples, albeit conceptually, as opposed to ad hoc texture
based segmentation methods. 

In this article, I will summarize an application of frac
tal dimension estimation to target detection. I begin with 
a short discussion of fractals and fractal dimension. Al
though the fractal geometry of nature leads us to the use 
of fractal dimension as a target discriminant, the appli
cation is a computational procedure that can be judged 
solely by its efficacy in detecting targets. For this reason 
and for the sake of brevity, I provide here only a short 
discussion of fractal geometry. (Interested readers should 
peruse the bibliography for texts on fractal mathematics, 
physics, graphics, and history.) Then I will summarize 
work that led me to apply a particular fractal dimension 
estimator and the results of a target detection where I 
segmented a jet aircraft from a sea surface background. 

FRACTALS AND FRACTAL DIMENSION 
A precise physical definition of fractal has not yet 

appeared, nor is it essential for applications in image 
processing. More important is the general concept of a 
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fractal. Falconer1 defines fractals as objects with some or 
all of the following properties: fine structure (i.e., detail 
on arbitrarily small scales) too irregular to be described 
with Euclidean geometry; self-similar structure, with 
fractal dimension greater than its topological dimension; 
and recursively defined. This definition extends fractal 
into a more physical and intuitive domain than the orig
inal Mandelbrot definition whereby a fractal was a set 
whose "Hausdorff-Besicovitch dimension strictly exceeds 
its topological dimension.,,2 The fine, irregular, and self
similar structure of fractals can be experienced firsthand 
by looking at the Mandelbrot set at several locations and 
magnifications. Better physical examples exist that show 
the connection between natural processes and fractals in 
nature. Mandelbrot and Voss2 have synthesized realistic 
landscapes and cloudscapes using fractional Brownian 
motion. Prusinkiewicz and Lindenmayer3 have syntac
tically modeled plant growth, producing fractal plant 
forgeries that are both visually believable and botanically 
correct. Feder4 has shown that diffusion aggregation pro
cesses, such as the deposition of films, produce fractals. 
These physical fractals are not fractals in the mathemat
ical sense, because they have no structure at arbitrarily 
small length scales. For example, if we look at a cloud 
with higher and higher magnifications, eventually we 
begin to see the molecular structure of the atmosphere. 
This does not present a practical difficulty in target de
tection, since we are always looking at intermediate 
length scales in our images. 

In our application of target detection, we are most 
interested in observable differences between the sensor 
images of natural objects and man-made objects. One 
such observable quantity is fractal dimension, which is 
integer for objects with simple Euclidean descriptions 
(e.g., an aircraft composed of simple curved surfaces) and 
may be non-integer for complex natural surfaces (e.g., the 
clutter pattern of the ocean surface). 

What do we mean when we assign dimension to some 
object? When we say that a surface has dimension two, 
we understand that it takes two coordinates to locate a 
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point on the surface or that the surface can "live" in 
spaces with dimension two or greater. Most importantly 
in this discussion we mean that the "size" of a surface 
is measured by area, the "size" of a cube is volume, and 
so on. In short, we can interpret the dimension of an 
object as the way the capacity (area, volume) changes 
with respect to a characteristic length. For the normal run 
of Euclidean objects, dimension is always integer; how
ever, the notion of capacity can extend to non-integral 
values of dimension. 

Consider a bounded surface in space. Let us try cov
ering the surface with line segments, squares, and cubes 
such that after we have constructed the covering, the set 
of elements (lines, squares, or cubes) in a covering con
tain all of the points in the surface. The boxed insert 
(Measuring the Size of a Surface) illustrates this process. 
We approximate the area of the bounded surface as the 
sum of the areas of the squares needed to cover the 
surface. As we let the edge length of the squares become 
small, in the limit zero, we have better and better esti
mates of the surface area. Can we assign a length to the 
plane in this way? Obviously, we can cover the plane with 
an infinite number of line segments, and thus the plane 
has infinite length. Similarly, if we use cubes for the 
covering elements, we conclude that the surface has zero 
volume. Thus, we can define the dimension of the surface 
as the dimension of the covering elements that give us 
a non-zero but finite capacity. This seems a somewhat 
awkward definition for dimension. Now let us consider 
a curve constructed as in the insert (Constructing a Frac
tal Curve). We start with a line, then replace that line 
segment with three line segments arranged as shown in 
the insert, and then replace the smaller line segments each 
with three smaller line segments, ad infmitum. We can 
see that the length of the curve is infinite, but its area is 

MEASURING THE SIZE OF A SURFACE 

We can approximate the size of a surface by covering it 
with 

line segments 

and adding up the length, area, or volume of the covering 
elements. As we let the length of the line segments get 
small, the "length" of the surface becomes infinite. Like
wise, the "volume" goes to zero. Only for the covering with 
squares is the size (area) finite. 
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zero. The curve is a fractal, and its dimension is some
place between one and two. Also, the curve is irregular 
and rough because it is continuous everywhere but dif
ferentiable nowhere, is defmed recursively, and its self
similar structure is evocative of a snowflake. 

What are the geometric objects in our target detection 
problem? We take an image and make a surface by as
signing a height equal to a pixel intensity to each pixel 
location. When the image is of a natural (fractal) object, 
the surface may have a fractional dimension. When the 
image is of an aircraft, for example, the surface will be 
composed of Euclidean surfaces with integer dimension. 

DIMENSION ESTIMATORS 
I selected a dimension estimator for images by first 

testing several dimension estimators on a set of fractals 
with known dimension. I was interested in estimators that 
performed well on short data records so that the dimen
sion estimates were localized within small neighbor
hoods of the image. I was also interested in dimension 
estimates in the presence of noise, since our images are 
acquired with real, noisy sensors. For the sake of brevity 
I discuss only three dimension estimators. 

A variety of practical dimension estimators are com
monly used. To draw an analogy, when trying to estimate 
the usually defined Riemann integral of a measured time 
series, it is not necessarily the best approach to directly 
use the Riemann sum (i.e., approximation with rectangu
lar areas). Instead, one may be better off using a trape
zoidal rule (thus assuming that the signal is best interpo
lated linearly), or spline fits , or polynomial fits (Lagrang
ian integration) , and so on. All of these methods reduce 
to the Riemann integral in the limiting case, yet they often 
have demonstrably better performance than the naive 
approach. The same is true of dimension estimation: 
making assumptions about the signal can improve or 
sometimes degrade the estimation of dimension. 

Box -Counting Dimension 
The first step in finding the box -counting dimension 

estimate is to compute a function Mb[A, 0] of the set A. 
This measure counts the number of boxes, fixed on a 
lattice of edge length 0, that are needed to cover A. Then 
the dimension of A , Db' is the number d that satisfies 

where C is a constant. Note that the slope of the graph 
of the logarithm of capacity versus the logarithm of 0 is 
simply related (D - 2 = d In Mid In 0) to the dimension. 
In fact, when we are interested in dimension over limited 
scales, we will estimate the slope over those scales. Note 
also that box counting is ill-defined under affine trans
forms of the graph itself. In the Kiesswetter5 curves 
shown in Figure I , if the vertical scale is magnified or 
minified, the measure of the graph will change. Box
counting dimension is problematic for self-affine graphs 
since one can manipulate scales to get any dimension. A 
practical problem associated with all dimension estimat-
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CONSTRUCTING A FRACTAL CURVE 

Take a line segment (generation 0) and replace its center 
third with two line segments, each having the same length 
as the center third (generation 1). Take each new line seg
ment and replace its center third with two line segments as 
before (generation 2). Do this ad infmitum. 

Generation 0 

Generation 1 A ----.J/ \ _____ 

Generation 2 

Generation 5 

If we approximate the area of this curve by covering it 
with square tiles that have edges as long as the line seg
ments, we have 

ing methods that use a measure and then estimate d is that 
a real fractal may only scale over a limited range of o's. 
How do we choose the range to estimate d? In Figure 2, 
a saturation region seen on the left should be excluded, 
for example. As the size of the boxes approaches the size 
of the data sample lattice, the boxes will contain at most 
one sample point from the graph, so that Mb[A, d] ap
proaches N, where N is the number of samples. 

Hurst Dimension 
The Hurst dimension4 is estimated by computing the 

cumulative range of the graph over intervals {Oi }' Thus, 
the Hurst method avoids the complications that box 
counting has with self-affine graphs, since the vertical 
scale is self-defined. First the measure Mh[A, 0] is com
puted by 

Mh[A , 0] = E (Max[Ai] - Min[Ai1) 

Ai = {y :io ~ x < (i + 1)0} , 
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(2) 

Using Fractal Dimension/or Target Detection in Clutter 

A = tile area x number of tiles 

=(j)"" x4
n =(~f · 

where n is the generation number, and d is the tile dimen
sion, two. Since 

lim A=O , 
n-+ oo 

the area of the curve is zero. If we approximate the curve 
length by tiling with line segments, 

L = segment length x number of segments 

=G)"" X4
n =(H 

and 

lim i~oo , 
n~oo 

the length of the curve is infinite. To find the dimension, 
let us define capacity as 

Then the capacity is fmite when 

1 = - x 4 n => d = - == 1. 26 (
l)dn 1n4 
3 In3 ' 

so the fractal dimension is 1.26. 

where the sum ranges over {i} that cover the domain of 
A (Fig. 3). Then the term d that satisfies the hypothesis 
that 

(3) 

is the Hurst dimension Dh (Fig. 4). 

Spectral Dimension 
Spectral dimension estimates are based on the assump

tion of fractional Brownian motion6 (fBm). If the func
tion is mm, then the correlations scale as 

<lx [t+T]- x [t]I>=T -H <Ix [t+ l]- x[t]I> , (4) 

where < > is the expectation operator, Ds = 2 - H, and it 
can be shown6 that 

IX[k]12 = Ck-2H- 1 , (5) 
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Figure 1. Box-counting measure is the number of boxes the 
graph intersects as a function of the box size. A. Boxes of V2 x 1/2 . 
B. Boxes of 114 x 114 . (f= Kiesswetter curve.) 

where X[n] is the discrete Fourier transform of a discrete 
signal x[n]. Thus, the estimation of spectral dimension 
involves computing the sample power spectral density 
IX[k]12 and then finding the slope of the log-log presen
tation. 

Figure 5 is an example where the function is not fBm 
but still has correlations of the form (Eq. 4), and thus the 
estimate is relatively good. A counterexample is a saw
tooth wave that has Db = Dh = 1.0, whereas Ds = 1.5. 

Evaluating Dimension Estimators 
The application of several dimension estimators to the 

functions in Table 1 are summarized in Table 2. The box 
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Figure 2. A box-counting measure in log-log presentation. The 
slope of the line equals Db - 2. 

estimate is consistently low. The Hurst estimate is com
pressed about D = 1.5 but accurately estimates the di
mension of the ramp and the noise process. The spectral 
estimate performs better than the Hurst estimate for the 
three fractals but is grossly incorrect for the ramp and 
noise process. The parenthetic entries in the spectral esti
mate column are the expected results: It is possible to 
show that the spectral estimation algorithm should yield 
Ds = 1.5 for a ramp and Ds = 2.5 for an independent noise 
process. Figure 6 presents the results juxtaposed against 
the ideal, D = Db,h,s ' This clearly demonstrates the supe
riority of the Hurst estimate in this context. 

ESTIMATING DIMENSION 

FROM NOISY RECORDS 
The estimation of fractal dimension begins with the 

calculation of an approximate capacity measure, the rate 
at which covering area changes with covering tile size. 
The subsequent step involves finding the region of this 
curve that satisfies a hypothesis of an exponential rela
tionship between (using a two-dimensional example) the 
covering area and tile size. Unfortunately, we know of no 
first-principles method for determining what constitutes 
a good scaling region that satisfies the hypothesis well. 

Although one can extract scaling regions by eye, a 
subjective approach compromises quantitative results. 
More important, when computing a dimension image 
from an infrared image where the scaling region deter
mination must be made for each pixel in the image, there 
must be an automatic and thus objective criterion func
tion for doing so. In addition, the image probably con
tains high-dimensioned noise and will thus have two 
scaling regions if the signal-to-noise ratio is moderate and 
the underlying image is pseudofractal rather than not 
fractal at all. We must consider how to segment the ca
pacity measure into multiple scaling regions, since 

1. The set may be a pseudo fractal that only scales as a 
fractal over a limited range of lengths; or 

2. The set may be a mixture of several fractals , 
pseudofractals, or nonfractals and thus may have different 
scaling characteristics in different length ranges; or 

3. The set may not be a fractal at all. 
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Figure 3. The Hurst measure is the area covered by the ranges 
of the graph in intervals. A. An interval of 1/2. B. An interval of 1f4. 
(f= Kiesswetter curve.) 

The way we handle these different possibilities can 
cause significant disagreement in dimension estimates 
that purportedly relate to a specific set. For example, if 
one were to estimate the dimension of cloud infrared 
radiance using a very noisy infrared imaging sensor, and 
also depended on short length scales on the order of the 
imager pixel size, then the estimate would likely be 
around D = 2. Conversely, a low-noise imager and longer 
length scales provide an estimate of D = 1.16. Because 
of these problems, dimension estimates should always be 
accompanied by the range of scales used to make the 
estimate. We assume that the log-log capacity measures 
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Figure 4. The Hurst measure of Figure 3 in log-log presentation. 
The slope of the line equals 0h - 1. 

-4 

5' -6 
(f) 
0.... 
OJ -8 
.2 

-10 

-12 

_14L------L------~----~-------L---------.J 

23456 7 

log[f] 

Figure 5. The power spectra density (PSD) of the Kiesswetter 
curve (f) and the least-square-error line fit to the data (0 = 1.53). 
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Figure 6. Comparison of dimension estimator performance. 

are invariant, except for translation of the function origin, 
under affine transforms of the fractal graph. This is not 
true, as previously noted, for the box-counting method. 

We create a graph with two scaling regions and dif
ferent dimensions by adding a normally distributed, in
dependent, random noise process to a Kiesswetter curve 
(Fig. 7). The Kiesswetter curve has D = 1.5, and the noise 
process has dimension D = 2.0. The signal-to-noise ratio 
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Table 1. Summary of function properties. 

Function Type Scaling Dimension 

Weierstrass- Deterministic Self-affme 1.6 
Mandelbrot 

Kiesswetter Deterministic Self-similar 1.5 
Fractional Random Self-affme 

Brownian 
motion 

Ramp Deterministic Self-similar 
Uniform Random Self-affine 

pseudoran-
domprocess 

Table 2. Dimension estimation results. 

Ramp 

Fractional 
Brownian 
motion 

Kiesswetter 
Weierstrass

Mandelbrot 
Uniform 

independent 
noise 

Box Hurst 
estimate estimate 

0.93 1.00 

1.21 1.45 

1.32 1.51 
1.26 1.54 

1.76 1.99 

aExpected results. 

Spectral 
estimate 

1.45 
(1.50)a 
1.40 

1.53 
1.59 

2.52 
(2.50)a 

1.4 

1 
2 

Hausdorff-
Besicovitch 
dimension 

1.00 

1.40 

1.50 
1.60 

2.00 

of the sum is about 4. In Figure 8, we display the expected 
range of the Kiesswetter curve, the best exponential re
gression, and note that the slope of the line implies a 
dimension Dh = 1.488 such that 

(6) 

The measure Mh[T] for the noisy Kiesswetter curve 
fn[x] will obviously satisfy 

(7) 

for small T, since the (independent) noise process will 
dominate the measure and will satisfy Equation 6 for Dh 
== 1.5 and large T. 

Figure 9 shows how both noise and Kiesswetter curve 
dimensions are extracted from different sections of the 
measure. The sections were selected by computing the 
curvature of a polynomial fit to the measure and then 
selecting scaling regions where the curvature was less 
than some threshold. Here, the portions of a 9th-degree 
polynomial fit with curvature less than 0.15 were selected 
(thresholded) as scaling regions. 
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Figure 7. A noisy Kiesswetter curve (tn) with a signal-to-noise 
ratio of 4. 
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Figure 8. A log-log graph of the expected range of the Kiess
wetter curve without noise (blue curve) and the best linear fit (black 
curve). (All logarithms are taken to base e.) 

IMAGE SEGMENTATION 
USING DIMENSION ESTIMATES 

We now look at an application of fractal dimension 
estimation to a real signal processing problem: We seg
ment a T-38 jet aircraft from a benign clutter background 
in an infrared image. The data are taken from experiments 
in support of the algorithm design for an infrared seeker 
demonstration program. We find that by first computing 
the local Hurst dimension of the surface of infrared ir
radiance as a function of position (which results in a 
dimension image) and then thresholding the dimension 
image, we obtain a more robust estimate of target size and 
location than that provided by immediate thresholding of 
the infrared image. 
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Although the experiment is not conclusive, it suggests 
a possible scheme for improved detection of extended 
targets in clutter. The algorithm for computing the local 
Hurst dimension of images is straightforward, requiring 
only the maximum and minimum of the image over a 
small set of neighborhood sizes and the computation of 
the least-squared-error fit to the function of image range 
over neighborhood. The experiment has also suggested 
that ways be found to incorporate a priori knowledge of 
target shape into the dimension segmentation scheme. In 
this example we use a square neighborhood for the es
timate, but using a target-shaped neighborhood would be 
better. 

The segmentation of candidate threats from back
ground is an early step in the signal processing associated 
with infrared seekers. Typically, the image is segmented 
by computing some threshold irradiance value RT based 
on the sample statistics of the entire image (e.g., vari
ance), and then the image is thresholded such that pixels 
exceeding RT are labeled as threat and all other pixels are 

O ~--~--~----~--~----~--~----. 

~ -1.0 
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OJ 
.2 -2'0 f--===-_~ 

'" 0= 1.50 
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10g[T] 

Figure 9. By selecting portions of Mh with low curvature, both the 
noise dimension (for small T) and the Kiesswetter curve dimen
sion (for large T) are estimated. (fn = noisy Kiesswetter curve). 
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labeled not-threat. This constitutes a needed data com
pression step: We reduce a large number of possible 
threat locations to a relatively smaller set. Normal prac
tice is to assign a nonzero constant value (e.g., 1 to values 
that exceed the threshold and 0 otherwise) to minimize 
memory requirements. The segmented image is then pro
cessed with a variety of false-alarm suppressing algo
rithms such as m-of-n detection, track logic, and so on. 

The Infrared Data 
I selected three images of a T-38 jet against a variety 

of sea surface conditions for this experiment. The data 
are from a 3- to 5-l"m-waveband mercury-cadmium
telluride 128 X 128 staring-array infrared detector. The 
images were digitized on the Mercury image processing 
workstation in APL'S Electro-Optics Systems Group Im
age and Signal Processing Laboratory and then trans
ferred to a DEC Micro Vax GPX II image and signal pro
cessing workstation for further processing using Image 
Description Language as a programming environment. 

The images have clutter backgrounds that are benign 
(low-level sea irradiance), structured solar sea glint, and 
saturated solar sea glint (Fig. 10). In Figure lOA, the jet 
is faintly visible near the center of the infrared image as 
a lighter spot. In Figure lOB, the jet is invisible, although 
it can be discerned when the motion of the jet against the 
background is observed in the video tape. Humans appear 
to discriminate jet from sea glint in Figure lOB (with 
motion) by discriminating on the basis of subtle textural 
cues: Fractal dimension correlates well with human per
ception of texture, l and thus a time series from the sce
nario in Figure lOB is an ideal candidate for fractional 
dimension/motion detection study. In Figure 10C, the 
spatial density and size of glint patches cause each image 
pixel to include at least one solar image, and the jet is 
discerned by its obscuration of the glint. 

In what follows we will only use Figure lOA for ana
lytical and experimental purposes. Simple application of 
dimension estimation on a single image was insufficient 

c 

Figure 10. Examples of targets in background clutter. A. Jet in benign clutter. B. Jet in structured glint. C. Jet in saturated glint. 
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to extract the target in Figure lOB, and Figures lOA and 
10C are similar enough that we suppose dimension es
timation should work on both. 

Computing the Dimension Image 
from the Infrared Image 

We compute the dimension image using the Hurst di
mension estimation algorithm, previously described, 
which is easily extended to two dimensions by finding 
the range of the image intensity value over a square area 
rather than an interval. 

The image in Figure lOA can be thresholded imme
diately to segment target from background. Figures IIA 
and lIB show Figure lOA thresholded at gray levels of 
170 and 160, respectively. In Figure lIB the reader can 
discern the T-38 location and outline, but it is unlikely 

A B 

Figure 11. Examples of simple threshold sensitivity. A. The 
image of Figure 10A thresholded at 170. B. The image of Figure 
1 OA thresholded at 160. 

A 
0=0-

D=3.0 -

that an image processing algorithm could do so generally. 
When we compare Figure lIB with Figure lOB, we see 
that the clutter structure is similar and thus we suppose 
that the clutter in Figure lOA is infrared skylight reflec
tion from the sea surface or some similar phenomenon. 
Figure II A shows Figure lOA thresholded at a higher 
level, and we see that whereas the number of false de
tections is greatly reduced, we have also lost the outline 
of the T-38. 

Figure 12A is the dimension image computed from the 
image in Figure lOA by the Hurst method, with ranges 
measured over intervals of {I, 2, 4, 8, 16, 32}. The 
dimension at a pixel is computed from the log-log slope 
of the average ranges over these intervals. Figure 12B is 
the result of thresholding the dimension image at D ::::: 2.0. 
The bounding polygon in Figure 12A represents a border 
about 16 pixels from the jet outline proper. Note that the 
interior of the bounding polygon has D ::::: 2.0, whereas 
most of the remaining image has 2.5 ~ D < 3, as we 
would expect. 

Let us compare the two methods of segmentation
thresholding the irradiance image versus thresholding the 
dimension image: 

1. The threshold for the dimension image is selected on 
first principles , since the dimension of the jet should be 
D ::::: 2.0, whereas an irradiance threshold is selected from 
image statistics. 

2. The thresholded dimension image provides an out
line of the target. The thresholded irradiance image gives 
only a few pixels on the target when the threshold is low 
enough to give a reasonable false-alarm rate. 

3. The method using estimation of dimension is rela
tively simple, although not as simple as thresholding the 
irradiance image. 

B 

Figure 12. Locating the jet with fractal dimension. A. The dimension image corresponding to Figure 10A. The outline bounds a region 
of low dimension. The strip to the left is the dimension-to-gray scale correspondence. B. The dimension image thresholded at 0"" 2.0. 
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The selection of threshold on a priori dimension dif
ference between target and clutter fosters robustness in 
the segmentation. Target outline may be better than target 
hot spot in endgame guidance, since the best aim point 
is not always the hottest spot on the target. Finally, di
mension images probably can be computed in flight hard
ware within time, size, power, and weight constraints, 
since the algorithm is so simple. 

FUTURE DIRECTIONS 
Although fractal dimension estimation has been used 

for segmentation of images, unresolved practical issues 
remain. Dimension estimates should give good results 
when applied to small data sets, determine over what 
range of scales the estimate holds, work when the obser
vations include modest high-dimensioned noise, and 
have low computational complexity. I have performed a 
numerical experiment to investigate these problems and 
have found an estimator, called the Hurst estimate, that 
gives good results on one-dimensional fractal approxima
tions. I demonstrated a technique for fmding scaling re
gions for the estimate. When the estimator was extended 
to the two-dimensional case, I was able to segment an 
airplane from a cluttered image. 

My work so far has addressed the issues of noise, short 
data records, best estimators, and object shape in image 
segmentation. Many issues remain to be addressed, such 
as characterizing the fluctuation of dimension estimates 
around the true dimension of an image, and implemen
tation of matched filters on dimension images. Work on 
practical implementations (e.g., algorithm design and po
tential for application-specific integrated circuit imple
mentations) of these algorithms is yet to be undertaken, 
but the approach discussed in this article holds promise 
for new missile signal processing applications. 
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