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NEW DIRECTIONS IN MISSILE GUIDANCE: 
SIGNAL PROCESSING BASED ON 
NEURAL NETWORKS AND FRACTAL MODELING 

New research in missile guidance and navigation at APL is concentrating on two areas of the science 
of complexity: neural networks and fractal scene modeling. Requirements for autonomous target recog­
nition and scene matching are major considerations in evaluating this emerging technology. Ongoing 
APL investigations are directed toward the recognition of ships using back propagation neural networks, 
and the representation of ship targets using approaches such as Fourier descriptors and primitive struc­
tural features. New work involves investigating the utility of fractal models as the basis of natural scene 
rendering for evaluating both target recognition and scene-matching navigation systems. This article dis­
cusses two internally funded APL projects to investigate the above-mentioned approaches for advanced 
missile guidance. 

INTRODUCTION AND BACKGROUND 

Practical development of new tactical missile guidance 
systems has reached the threshold of a new paradigm, 
which requires a radical shift of intellectual perspective. 
The system designer can no longer view the development 
of missile guidance solely as a problem in search, detec­
tion, and tracking for terminal engagement with an ar­
bitrary target. Future missile systems operating in a 
complex and cluttered environment must be able to con­
trol adaptively the outcome as if possessed of intelligent 
reactions, which means that future missiles will be pro­
grammed to hit only desired targets. This seemingly in­
nocuous tactical requirement of "target selection" has 
enormous implications and in its essential form translates 
into target recognition. Furthermore, autonomous target 
recognition (ATR) requires a leap of trust on the part of 
the tactical system user. No one will use a weapon sys­
tem, however sophisticated, that is not reliable. Since the 
tactical environment is so inherently unpredictable, a high 
degree of fault tolerance (and fault avoidance) is there­
fore needed in the maintenance and operation of A TR sys­
tems. Neural networks offer the prospect of robust or 
fault-tolerant performance for future missiles used in a 
variety of tactical scenarios requiring reliable target 
selection. 1,2 

As the adversary has become more sophisticated in his 
responses and as threats have proliferated, weapons that 
respond effectively have increased in complexity, and the 
concomitant signal requirements have become more 
challenging in terms of bandwidth, dynamic range, sen­
sitivity, and adaptability. For instance, it is no longer satis­
factory that we detect point targets, reject homogeneous 
clutter, and track targets via centroid or even correlation 
estimation. We must now detect extended and often com­
plex targets embedded in inhomogeneous and even statisti-
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cally nonstationary scenes. Multiple threats must be 
tracked, and false identifications are a major concern and 
a tactical liability. System developers who wish to push 
the state of the art of missile guidance beyond present 
limits increasingly demand synthetic models that take 
proper account of the real world, both target and back­
ground. Investigators are now addressing the applicabili­
ty of fractal-based scene modeling to image-matching­
based navigation systems (Constantikes, unpublished data) 
and to the modeling of cloud clutter. 3 These models and 
the contemplated solutions to the guidance problems now 
encountered share a common relationship. 

Heinz Pagels recently captured the essence of this new 
paradigm that underpins the relationship between the 
real-world models that support tactical missile perfor­
mance prediction, and effective solutions to missile guid­
ance derived from the models. Speaking in more general 
terms than the context of missile guidance, he describes 
the rise of the sciences of complexity in quoting Peter 
Lax of New York University, who says: 

The traditional branches of science, the experimental and 
the theoretical, correspond to the traditional sources of 
knowledge. In the last two decades a third branch, the com­
putational, has joined the other two, and is rapidly ap­
proaching its older sisters in importance and intellectual 
respectability . . . This rapid rise of computing was made 
possible by striking improvements in computer hardware 
and software, and by equally striking improvements in the 
discretizations of the equations that model the physical 
phenomena, as well as clever algorithms to solve the dis­
cretized equations. 4 

Pagels goes on to emphasize the importance of various 
emergent disciplines within the new "sciences of com-
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plexity," among which are biologically inspired connec­
tions/neural networks and nonlinear/chaotic dynamical 
systems. In fact, there is a close relationship among 
chaotic dynamical systems, fractal models of nature, and 
the behavior of neural networks. For pattern recogni­
tion and scene representation-two fundamental require­
ments for intelligent missile guidance-these emergent 
and novel aspects that make up the science of complex­
ity appear promising and worthy of investigation. 

An internally funded special-interest project, under way 
for the last two years at APL, is addressing signal en­
hancement and target classification as it pertains to tac­
tical missile guidance. Neural network and parallel 
computational solutions to particular mission require­
ments, especially antiship missiles, have come into focus 
in two projects. In addition, a new initiative that inves­
tigates scene representation using fractal modeling is also 
planned. In the following sections, these efforts are 
described and some of the progress is highlighted. 

PRIOR ART AND KEY ISSUES 
An ATR system can be defined as "a class of equip­

ment consisting of sensors and processors (hardware and 
embedded software) [that] ... accepts data from oth­
er sources and functions to sense and process scenarios 
of military interest ... independent of human interven­
tion. ,,5 This definition makes clear that A TR design and 
analysis are classic systems problems. A priori informa­
tion provided to the missile at launch is used to bound 
and define the expected ATR target set. For example, sig­
nals of interest, such as target radar transmitter charac­
teristics, could be defined at launch for a missile that 
performed A TR using a passive RF receiver. It is clear that 
the range of choices available to the developer of recog­
nition algorithms is limited by the choice of sensor, the 
computing power and time available to perform the 
recognition task, and environmental considerations. Ta­
ble I lists some common techniques investigated by APL 

for antiship applications and associated with various 
types of sensors. 

In developing future ATR systems, there are two 
different philosophies: design ATR algorithms to fit ex­
isting sensors, and create new, multisensor suites to ob­
viate the limitations of current sensor technology and 
therefore exploit multispectral signatures and propaga­
tion trade-offs. Either way, the objective is to gather as 
much invariant and reliable information on the target 
as possible. The information should be invariant with 
respect to target aspect, kinematics, clutter, noise, in­
terference, weather, and time of day or year. 

To be robust, ATR algorithms have certain key needs I 
that include high-fidelity modeling of targets and clut­
ter to assist the algorithm training process, a capability 
for adaptation to variable tactical environments in real 
time (in-flight) or near real time (preflight), generation 
and selection of invariant target features (as mentioned 
above), and the use of a priori and/or contextual knowl­
edge (e.g., threat priority, countermeasure response or 
potential, disposition of alternate threats, and the pos­
sibility for coordinated reaction). Neural network tools 
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Table 1. Autonomous target recognition techniques for anti­
ship applications. 

Sensor 

Noncoherent (RF) radar 

A TR techniques (preprocessing/ 
classification) 

Use of a priori target geo­
specific location 

Coarse sorting by size and/ or 
length 

Feature extraction using fast 
Fourier transform 

Statistical classification of 
returned pulse shape 

Synthetic aperture radar Coarse sorting by aspect ratio 
Collapsing target image into 

longitudinal profile 
Reconstruction using maxi­

mum entropy method 
Maximum likelihood estima­

tion of radar scatterer 
distributions 

Forward-looking infrared Walsh-Hadamard, Fourier 
boundary, and moment 
descriptors 

Nearest-neigh bor classifiers 
Binary template correlation 

offer potential solutions to these ATR needs. Learning 
algorithms, such as back propagation and variations of 
it, can be used to address all the ATR needs. Background 
and clutter characteristics may be more accurately mod­
eled using fractal-based approaches. Good target fea­
tures can be found by neural-network-inspired feature 
selection. For "higher vision" functions that establish 
context or use a priori knowledge, expert systems ap­
proaches may be used, although generally these rule­
based artificial intelligence systems are "brittle," that is, 
not very fault-tolerant. Two APL internal research and 
development projects are under way to investigate these 
ATR needs. 

NEW APPROACHES TO 
TARGET RECOGNITION AND 
SCENE-MATCHING DEVELOPMENT 

To lend some perspective to the target recognition and 
scene-matching problems, consider the system-level func­
tional diagrams shown in Figures IA and lB. Figure lA 
relates to the antiship problem in which a radar-based 
A TR system views the target, processes the signal (effec­
tively reducing the input data bandwidth without loss of 
important invariant information), and subsequently clas­
sifies the target according to some predetermined al­
gorithm embedded in a digital post-processor. In the 
process of training, the preprocessor (or feature selector) 
may be determined by a neural network designed to find 
a good (but not necessarily the best) representation of the 
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Figure 1. Basic architectural com­
ponents and scenarios. A. Active RF 
antiship sensor/ATR system. B. Pas­
sive infrared (IR) or electro-optical (EO) 

sensor/scene-matcher system. 

B 

target. ("Best" in only one set of conditions is not neces­
sarily better than "good" under most conditions.) Tradi­
tionally, classical statistical ATR algorithms such as 
Bayesian and nearest-neighbor classifiers have been used. 
These classical methods were not very successful, partic­
ularly at broadside aspect, because of the limited spatial 
resolution of current radar seeker data. Recently, back 
propagation neural networks have been evaluated and 
compared against these standard statistical classifiers un­
der a limited set of conditions. 6 This will be described 
in the section titled Neural Network Training, where em­
phasis will be placed on the training phase and the vari­
ous alternatives to target representation. 

For almost a decade, APL has also investigated the per­
formance and characteristics of image-based scene match­
ers. Enroute navigation updates are required for the 
inertial guidance of land-strike missiles using such scene 
matchers (see Fig. IB). The surface of the Earth repre­
sents an extended "target" that is periodically sampled 
by an electro-optical (EO) or infrared (IR) sensor. The sen­
sor video snapshots are preprocessed by bandpass fIlter­
ing before correlation with a larger reference map. Then 
the correlation peak height and position are used to de­
termine the quality of match and the location offset rela­
tive to a predetermined missile flight path. Significant 
concerns include what types of imagery are suitable for 
accurate performance as measured by correlation, and 
what models incorporate the statistical properties needed 
to optimize system performance. These and other con­
cerns will be considered in the discussion of fractal scene 
modeling. 

NEW MODELS AND REPRESENTATIONS 
FOR MISSILE GUIDANCE 

Neural networks can contribute at two levels in a tac­
tical missile guidance system. At the first level, neural net­
works can interface to the missile sensor outputs. The 
interface can be either direct or via an intermediate band­
width-reduction and/or feature-extraction layer. The sec­
ond level consists of a single neural network that integrates 
the outputs of the lower-level networks or other sub­
systems with other known missile information to either 
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carry out or direct missile guidance. These two levels 
should work together to provide a robust, wide band­
width, and fault-tolerant missile guidance technology. 

Neural networks that interface to missile sensors pro­
vide a first level of bandwidth reduction and decision­
making. Networks operating at this level must compare 
sensor information with internally stored target models 
via an associative memory operation. Associative mem­
ory operations operate in reverse to standard computer 
random access memory, which requires that the com­
puter find the value at a specified memory location. In 
contrast, accessing associative memory requires finding 
the information distributed in the memory that most 
closely matches a given value. Networks functioning at 
this level serve to reduce the typically wide-bandwidth 
signals derived from missile sensors and to make deci­
sions regarding the nature of the data. 

The second and topmost network level accepts deci­
sions from the lower neural network components and 
other known missile parameters, such as inertial systems 
outputs, flight path perturbations, and factors such as 
electronic countermeasures. This level effectively com­
bines or "fuses" this information to make high-level de­
cisions regarding flight path modification, aimpoint 
selection, and fault recovery. 

The following discussion will concentrate on the first 
level of neural networks, which are used specifically for 
pattern recognition. 

Neural Network Training 
There exists a rich class of neural network models, each 

of which is applicable to particular sets of problems in 
pattern recognition. 7 The models can be divided into su­
pervised and unsupervised learning categories. The un­
supervised learning models include the adaptive resonance 
theory model, 8 self-organizing feature maps,9 and the 
adaptive bidirectional associative memory. IO The super­
vised learning models include the associative memory 
models (including the Hopfield model, II Hamming 
net,12 and bidirectional associative memory 13) and feed­
forward nets (such as the back-propagation net, 14 
among others). Network models have evolved that con-
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sist of modules of different neural network paradigms 
(e.g., a hybrid system consisting of a self-organizing fea­
ture map net to perform clustering on the front end and 
a back-propagation network to perform classification on 
the back end). 15 The associative memory models provide 
content-addressable memory, which is robust with respect 
to incomplete or noisy inputs, and essentially memorize 
the training data. The back-propagation model, on the 
other hand, generalizes in a statistical sense over the in­
puts and, with two hidden layers and a sufficient num­
ber of nodes in the hidden layers, can generate decision 
surfaces of arbitrary complexity. Figure 2 illustrates the 
typical structure of such a feed-forward network. In­
dividual processing elements in a given node are connected 
with each of the processing elements in the preceding or 
succeeding layer and are not connected with any other 
processing element in the same layer. 

In each of the neural network approaches, a critical 
issue is the representation of the information. An ideal 
representation is one that is invariant to all relevant 
parameters, such as aspect angle, kinematics, and noise, 
and is also a strong discriminant. For example, the 
Fourier-polar transform has provided a translation and 
rotation invariant representation for a problem involv­
ing the recognition of infrared aircraft images. 16 Other 
examples are shown in Table 2. For many problems that 
are not well-posed or are hard to predict on a statistical 
basis, it is difficult to arrive at a good representation. For 
such problems, invariance over only a few parameters or 
over a limited range of variation of any given parameter 
is achievable; it is then necessary for the training set to 
span the remaining variability that is not embodied in the 
representation. The selection of a suitable (invariant) rep­
resentation often is done independently of the choice of 
a particular ATR (classifier) algorithm. Multiple redundant 
representations are often more effective than separate 
representations. 17 The extraction of features suitable for 
pattern recognition, however, is a natural function of neu­
ral networks. 

An APL investigation of the recognition of range­
profile ship signatures using a back-propagation neural 
net with comparisons to baseline statistical classifiers 6 

will now be described. These signatures exhibit scintil-

Table 2. Selected feature representations and their invariance 
characteristics. 

Representation Invariance properties 

Fast Fourier transform Translation 
magnitudes 

Fourier-Mellin Translation and scale 
transform 

Fourier-polar 
transform 

Hu moments 

Walsh-Hadamard 
transform 

Translation, scale, and rotation 

Scale, translation, and rotation 

Translation 
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Missile 
A 

B 
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Figure 2. Structure of a two-hidden-Iayer neural network (C), 
which is embedded in the classifier portion (8) of an ATR sub­
system that could be interfaced to a radar sensor (A). The rela­
tionship between the input layer and the first hidden layer shown 
in the equation (0) is similar to the corresponding relationship 
between all layers of the network. 

lation effects and varying specular contributions from 
individual flat-plate and dihedral reflectors that result 
from aspect-angle variations caused by ship motion and 
missile line-of-sight dynamics. These variations are of 
key concern in our studies. In the APL classification ex­
periments, the training set consisted of data taken over 
a time span during which the target underwent one or 
more roll cycles. Neural net performance was evaluated 
by processing data at different target aspects: bow, quar­
ter, and beam. The magnitude of the fast Fourier trans­
form (FFf) provides a target signature representation that 
is invariant to translation and range but not to ship mo­
tion, aspect angle, or noise. For example, if the varia­
tions seen in the original data were due to profile scale 
compression only, the Fourier-Mellin transform would 
theoretically provide a representation invariant to aspect 
angle as well. The Fourier-Mellin transform, however, 
is not suitable for this problem, because of insufficient 
range resolution and because the variability observed is 

31 



B. G. Boone et 01. 

not simply due to profile scale compression. Moreover, 
other information, such as the location of individual 
peaks, is not encoded in the magnitude of the Fourier 
coefficients. By using complex FFf features, we include 
magnitude and phase. Phase information improves per­
formance because it accounts for structural information 
versus position, although at the expense of invariance 
with respect to the range translation Gitter) of the pro­
file within the data acquisition window. 

The most robust single representation discovered in 
these neural network studies consisted of five profIle shape 
descriptors (pso'S). As shown in Figure 3, these param­
eters include the number of peaks, area under the pro­
fIle, apparent length, separation between the two highest 
peaks normalized to the apparent length, and the loca­
tion of the highest peak normalized to the apparent 
length. Figure 4 shows that pso's provided better over­
all classification performance than the FFf magnitudes; 
they were also more robust with respect to aspect angle 
and, as shown in Figure 5, more robust with respect to 
the addition of noise to the test set. As shown in Figure 
4, individual pso's, when combined with the FFf magni-
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Figure 3. Definition of profile shape descriptors for a typical 
range-only radar profile. LN is length (range bins); area is the 
area under the profile; PKS is the number of peaks; PL is the 
location of the absolute peak; and PS is the separation between 
the two highest peaks. 
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Figure 4. Performance of a neural network trained with the 
back propagation learning algorithm for various choices of a 
feature set conSisting of different combinations of FFT and PSD 

features. Results are for a network tested against an Ex-DD at 
bow aspect. FFT = fast Fourier transform; PSD = profile shape 
descriptor; LN is length; AR is area under the profile; PKS is the 
number of peaks; PL is the location of the absolute peak; and 
PS is the separation between the two highest peaks. 
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tudes, do not significantly improve performance and, in 
some cases, degrade performance. The combination of 
the FFT magnitudes and all of the PSD'S provided the best 
overall performance. 

The weight matrix between the inputs and the first hid­
den layer of the network was trained with both the FFf 

magnitudes and the pso's to determine how the various 
features were weighted. Figure 6 details the mean abso-
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Figure 5. Robustness of neural network (trained by back prop­
agation) and conventional statistical classifiers (nearest-neighbor 
and hierarchical Bayesian) with respect to the noise degrada­
tion of the test set. The abscissa is the standard deviation of 
a band-limited Gaussian zero mean process, which is used to 
degrade each raw test profile (before feature extraction). Each 
profile is normalized so that its peak amplitude is unity. The 
performance of the neural network is shown for two choices 
of the feature set when tested against an Ex-DD at bow aspect. 
FFT = fast Fourier transform; PSD = profile shape descriptor. 
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Figure 6. The level of importance of each feature as interpreted 
by a neural network (trained by back propagation), given a fea­
ture set conSisting of 16 FFT magnitudes and 5 PSD'S. The 
weight matrix is the connection matrix between the input and 
first hidden layers. FFT = fast Fourier transform; PSD = pro­
f ile shape descriptor; LN = apparent length; AR = area under 
profile; PKS = number of peaks; PS = normalized separat ion 
between the two highest peaks; and PL = normalized location 
of the highest peak. 
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lute weights for each of the 21 features (16 FFT'S and 5 
PSD'S). It shows that the 10 most heavily weighted fea­
tures consisted of four low-frequency FFT magnitudes 
(frequency bins 1 through 4), three middle-frequency FFT 

bins (bins 6, 8, and 9), and three PSD'S (length, area un­
der the pulse, and relative position of the highest peak). 
The neural network provides an effective means of com­
bining and evaluating dissimilar feature representations 
for which a suitable metric is not apparent. The neural 
network simply learns which features or combination of 
features are good discriminants. 

Fractal Scene Modeling 
The ATR systems rely on knowledge of target geome­

try to distinguish target from nontarget. Yet these sys­
tems often operate in environments with natural clutter 
backgrounds. Thus, investigators are prompted to ask 
how knowledge of natural geometry can be embedded 
in these systems. Autonomous scene-matching naviga­
tion systems compare the geometry of an observed scene 
to a stored scene to determine position. When the scene 
geometry is Euclidean, we can match on the basis of sim­
ple geometric primitives such as spheres, prisms, etc. 
How do we represent the geometry of natural scenes? 
What geometric statistics are appropriate to modeling 
the detection and false alarm performance of scene­
correlation navigators? These qu<::stions are complex and 
not well-understood. However, as Mandelbrot shows in 
his manifesto,18 nature has fractal geometry. We are 
beginning an investigation into the application of frac­
tal scene representations for design and performance 
analysis of the new generation of ATR and scene­
matching navigation systems. 

A fractal can be defined as "a shape made of parts 
similar to the whole." 19 This first definition makes ex­
plicit the idea of scaling in fractals. The scaling property 
is essentially how a fractal may capture the geometry of 
an object. Figure 7 illustrates that fractals may be com­
puted by geometric procedures (Fig. 7 A), or as a section 
of the phase-space attractor of a dynamical system (Fig. 
7B), or as random processes (Fig. 7C).20 Random frac­
tals are self-similar in distribution, while deterministic frac­
tals are self-similar sets. 21 The mathematics and 
geometry of fractals, fractal dimension, lacunarity, etc., 
are too rich for a discussion here (see the boxed insert 
for an introductory lexicon). References 18 and 19 pro­
vide a comprehensive treatment. 

The desirable properties of a scene model are that it 
have few parameters, built-in assumptions about the ge­
ometry of scene, and stable estimation techniques for ex­
tracting parameters from data. It should also be con­
structive as well as analytic; that is, the analyst should 
be able to synthesize a realization of a scene as well as 
to characterize its geometry. Note that different geome­
tries require different models, for example, forest versus 
tundra. The models can be directly applied to the design 
of nonlinear whitening filters that decorrelate the higher­
order moments of a scene or they can provide statistical 
models for detection of signals in natural noises. Estimat­
ed fractal dimension and lacunarity might be used for the 
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Fractals 
Shapes with fragmented and irregular patterns that tend to 
have the same degree of irregularity and/ or fragmentation 
at all scales. "Fractal" is a Mandelbrot neologism from the 
Latin "fractus," or broken. Fractals have fractional dimen­
sion (formally, Hausdorff-Besicovitch dimension 19) or self­
similarity. 

Fractal dimension 
Defined in a variety of ways using fractal similarity, clusters, 
mass, etc., the fractal dimension describes the rate at which 
some measurement of the set diverges as the scale of the 
measure decreases. The usual example is a coastline: we 
measure the length using a set of dividers. The fractal dimen­
sion describes the way that measured length increases as the 
divider interval decreases. 

Lacunarity 
Mandelbrot neologism from the Latin "lacuna," or gap. 
Lacunar fractals are fractal sets interspersed with gaps. 
Lacunarity has not been quantified per se, although mea­
sures such as the variance of mass distribution have been 
used profitably. 22 

A 

Initiator Generator 

B c 

Figure 7. Examples of different fractals. A. A Koch curve, 
where line segments are replaced iteratively by the generator. 
A straight line initiates the curve. The curve shown results af­
ter four applications of the generator. B. The attractor of an iter­
ated function system, where affine transforms are applied 
iteratively to an initial condition. The affine transforms are select­
ed randomly from a set. C. Fractional Brownian motion rendered 
as a cloud. Fractional Brownian motion can be computed by 
synthesizing a frequency domain representation with random 
phase and power-law decreasing magnitudes. 
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segmentation of natural scenes into morphologically con­
sistent regions, and for discrimination of natural (frac­
tal) objects from manmade (Euclidean) objects (Fig. 8). 
When the models are used with image-rendering al­
gorithms, we may study the effect that shadowing in a 
natural scene has on ATR and on scene-matching al­
gorithms or synthesize data sets for ATR and scene­
matcher algorithm performance studies. 

Next, consider a scaling deterministic fractal, such as 
the Koch curve in Figure 7 A. If we know the scaling 
relationship for the fractal and we know a fragment of 
the curve, we know the curve everywhere. 19 Thus, the 
scaling relationship and a fragment of the curve also de­
fine all of the moments of the curve in a simple way. 
Fractional Brownian motion as illustrated in Figure 7C, 
a stochastic fractal, is also defined in part by a scaling 
relationship. 18 Thus, fractal models include the higher­
order moments that can be used by neural networks as 
features for classification or correlation. 

An analytic fractal model might be used to predict sys­
tem performance or to perform some recognition task. 
In matched filters, peak-to-sidelobe ratio is often used as 
a figure of performance. Sidelobe variance is a function 
of fourth-order sidelobe moments, but statistical models 
of scenes usually incorporate only up to second-order mo­
ments, that is, variance and correlation length. 23 Scene 
texture has been used as a sidelobe variance predictor, 
and some researchers have found that texture is well­
described by fractal dimension and lacunarity, which cor­
respond approximately to roughness and periodicity. 24 

Figure 9 shows an example of Weierstrass-Mandelbrot 
functions with different lacunarity and fractal dimension. 

Pentland 22 has shown that local estimates of fractal 
dimension can be used to segment images. This kind of 
segmentation could be used to control a multimode tar­
get-acquisition algorithm. The input scene (of Fig. 8) 
could be segmented into regions of solar sea glint and 
cloud and land clutter, as well as regions of no clutter, 
on the basis of local fractal dimension estimates. The 
target acquisition system could then process each region 
on the basis of the local statistics of clutter, thereby 
achieving better performance. 

The fractal literature is rich in estimates of fractal 
dimension of natural objects. 18,19 Burrough 19 has tabu­
lated fractal dimension estimates for a variety of environ­
mental data, Voss and Mandelbrot 19 have made 
numerous convincing forgeries of landscapes, and 
Lovejoyl9 has shown that fractal dimension is an invar­
iant of clouds. Recent investigations, however, suggest 
that estimating dimension must be done with some 
care. 3 

The APL initiative in fractal scene modeling will begin 
with a careful model-based estimation of the dimension 
and lacunarity of land-scene intensity images (intensity 
images of illuminated fractal objects are in themselves 
fractal 22

). These models can then be applied to problems 
such as clutter discriminants and detection statistics. In 
the longer term, we hope to synthesize three-dimensional 
scene models and use computer graphic rendering 
techniques 25 to study how ATR and scene-matching navi­
gation systems perform when environmental changes oc-
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Figure 8. A target acquisition system may have to operate in 
structurally varied clutter backgrounds. Each clutter type may 
require a different acquisition algorithm. Natural clutters can 
be distinguished by fractal dimension, and fractal models of 
clutter may provide geometrical statistics for system design. 
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Figure 9. Examples of random fractal images that illustrate 
combinations of lacunarity and fractal dimension. The images 
were synthesized by successively adding the real part of ran­
domly rotated one-dimensional Weierstrass-Mandelbrot func­
tions, previously extended in the orthogonal direction. 19 

cur, such as when lighting changes cause moving shadows, 
when snowfall causes partial contrast reversal of scenes, 
and when seasonal foliage causes shape changes. 

PROSPECTS FOR FUTURE WORK 
Ongoing efforts in pattern recognition at APL will con­

tinue to exploit the new set of computational tools offered 
by neural network models. These tools will be applied 
to a broader set of classification problems than consid­
ered previously, including high-resolution range-only ra-
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dar data and synthetic aperture radar imaging data. Some 
of the demonstrated capabilities of neural networks in­
clude fast optimization for image processing, knowledge 
encoding and fusion of diverse features, feature extrac­
tion and clustering, robust classification, and inclusion 
of a priori information. Issues that must be considered 
in these approaches include the choice of neural network 
paradigms, architecture, learning algorithms, and learn­
ing parameters, as well as feature representation, dimen­
sionality reduction, and other preprocessing steps. It is 
imperative in these empirical investigations to establish 
a baseline of optimal statistical pattern classification ap­
proaches; relative performance is more informative than 
is absolute performance in limited empirical studies. The 
synthesis of effective modules from neural network and 
more conventional classical approaches into a hybrid clas­
sifier will also be a consideration. The optimal solution, 
as in many difficult problems, will probably not involve 
any single breakthrough in a single field such as that of 
neural networks, but may involve several incremental de­
velopments throughout the entire field of pattern recog­
nition, including neural networks. 

A new effort in ATR-target acquisition-and scene­
matching navigation will apply fractal geometric approx­
imations of natural clutter and ray-tracing algorithms to 
the development of image clutter models and image syn­
thesis. It is hoped that such models will contain more 
complete knowledge of image structure than models cur­
rently used, and thereby provide a means for better as­
sessment of systems performance. Image synthesis of 
shadowed scenes, for example, will permit a detailed study 
of scene-matcher sensitivity to illumination instability over 
a range of scene geometries. New systems designs may 
use the models for obtaining more optimal performance 
in structurally varied clutter backgrounds. Issues include 
the development of robust fractal dimension estimators, 
lacunarity measures and estimators, and parametric scal­
ing statistics for scenes. Computational complexity of es­
timation and synthesis is also a prime concern. Models 
will be evaluated against measured image data to deter­
mine the higher-order correlation fidelity and the ability 
to segment images into morphologically consistent regions. 
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