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A STATISTICAL MECHANICAL EXPLANATION OF THE 
GARRETT AND MUNK MODEL OF OCEANIC 
INTERNAL WAVES 

Although the Garrett and Munk model of oceanic internal waves provides a useful catalog of existing 
ocean measurements, it is empirical and does not explain the observed spectra theoretically. By using 
methods from statistical mechanics, however, a first-principles understanding of the Garrett and Munk 
model can be obtained. 

Editor's note: It is probably not a coincidence that ocean waves, 
both surface and internal, have equilibrium energy spectra that 
are global. By global spectra we mean that the distribution of 
wave amplitudes among the various frequencies appears to be 
similar no matter where the waves are measured (avoiding patho­
logical situations). To a scientist conversant with statistical 
mechanics, this finding suggests the existence of underlying vari­
ables that are canonical, with energy states that are exponen­
tially distributed, much like the molecules of a gas immersed 
in a constant-temperature bath. In this highly theoretical arti­
cle, Allen and Joseph show that for oceanic internal waves, 
statistical equilibration is apparent. The methods of statistical 
mechanics are applied to weakly interacting internal waves by 
using the less often used Lagrangian description of fluid dynamics 
(in contrast with the normal Eulerian description). The authors 
use these methods, along with the assumptions of a canonical 
distribution and the existence of a total energy level Eo analo­
gous to, but most certainly not, the thermal energy kT. From 
this first-principles calculation is derived the Garrett-Munk energy 
spectrum-a semi-empirical but globally observed internal wave 
distribution. The authors then show that the Garrett-Munk spec­
trum is not a fundamental property of the system, as is a Max­
wellian velocity distribution for a gas, but rather is partly a 
consequence of the measurement process used to observe inter­
nal waves. The underlying canonical spectrum is presented, and 
various projections of it are given. More recently, Allen and 
Joseph have applied the same methods to ocean surface waves 
and have obtained the observed global equilibrium wave-vector 
spectrum in the saturation region of large wave numbers. Their 
demonstration of statistical equilibration is philosophically satis­
fying and is believed to be very important in the deeper under­
standing of geophysical fluid dynamics. 

J. R. Apel 

INTRODUCTION 

Almost two decades have passed since Garrett and 
Munk 1,2 introduced the model variance spectrum, which 
is now referred to as the GM model. They were concerned 
with the various fluctuation spectra associated with ocean­
ic temperature and velocity fields at length scales and time 
scales typically ascribed to internal waves. As an exam­
ple, Figure 1 shows a typical moored vertical-displacement 
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spectrum, replotted from the results of Cairns and Wil­
liams, 3 corresponding to a moored experiment conduct­
ed at a depth of about 350 m some 800 km offshore of 
San Diego, Calif. The moored spectrum is a function of 
frequency w, exhibits an w - 2 decay, and for the most 
part lies between the inertial frequency f and the Vrusahi 
frequency N (f and N will be discussed in more detail 
later). Figure 2 is a typical example of a horizontal tow 
spectrum, replotted from the results of Katz,4 that cor­
responds to a towed experiment conducted in the Sar­
gasso Sea at a depth of between 700 and 800 m. The tow 
spectrum is a function of horizontal wave number K and 
typically exhibits a decay between K -

2 and K -
3

• The GM 

model assumes that these fields are due to a random su­
perposition of linear internal waves, and the amplitudes 
of the waves are empirically adjusted to obtain agreement 
between the model and the various spectra associated with 
the observed fields. Although the GM model provides a 
useful and surprisingly reliable catalog of existing experi­
ments, it is empirical and does not explain the various 
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Figure 1. A typical moored vertical·displacement spectrum. 
(Adapted from Ref. 3.) 
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Figure 2. A typical vertical-displacement horizontal tow spec­
trum. (Adapted from Ref. 4.) 

observed spectra theoretically. In this article, we will ex­
amine the issue of how far one can go in obtaining a fIrst­
principles understanding of the GM model and will dis­
cuss some recent theoretical developments5

,6 that play an 
important role in providing such an explanation. We will 
show that by applying the methods of statistical mechanics 
to the problem of calculating the various fluctuation spec­
tra observed in the ocean, this goal can be attained. 

In developing such a theory, it is important to distin­
guish carefully between Lagrangian and Eulerian vari­
ables. Most observations and empirical studies are in 
terms of Eulerian variables, whereas the methods of 
statistical mechanics that will ultimately be useful for un­
derstanding and interpreting these studies are in terms 
of Lagrangian variables. This situation raises the issue 
of how to relate calculated statistical quantities, such as 
spectra, to the corresponding measured quantity given 
in terms of Eulerian variables. In a Lagrangian formu­
lation, the fluid is divided into microscopically large, but 
macroscopically small, parcels that are identified by the 
various values of a three-dimensional parameter that we 
will denote by the vector r. We will follow the usual cus­
tom that r corresponds to the position of the parcel un­
der the reference condition taken to be the undisturbed 
or static condition. Once selected, a specific value for 
r remains with the fluid parcel and does not change 
throughout the dynamic evolution of the system. We will 
denote the Lagrangian displacement by sdr, t) and the 
Lagrangian velocity by VL (r, t), where t is time. In ad­
dition, we will denote the Eulerian displacement by 
SE (x, t) and the Eulerian velocity by VE (x, t), where a 
given value for the Eulerian label x corresponds to a 
specific point in space and refers to the fluid parcel that 
happens to be at that point at time t. Thus, a given val­
ue for the Eulerian label x does not always refer to the 
same fluid parcel. The difference between these two 
labeling systems plays an important role in developing 
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a first-principles explanation for the observed oceanic 
spectra. 

The diffIculty in relating the two sets of variables is 
that the exact transformation between them is generally 
not tractable. It was recently shown, however, that a class 
of systems exists for which the problem of implementing 
an exact transformation can be avoided, and yet a trac­
table relation between Lagrangian and Eulerian spectra 
can be obtained. 5

,6 It was shown that over at least part 
of the wave-number domain, the Lagrangian and Eulerian 
wave-number spectra are significantly different. The cal­
culated moored frequency spectra are dominated by small 
wave numbers, where the Lagrangian and Eulerian spec­
tra are found to be approximately equal, and are in good 
agreement with experimental spectra, such as the one 
shown in Figure 1 (a precise definition of large and small 
wave numbers will be given later). Most tow experiments 
are concerned with large wave numbers, however, and 
at large wave numbers independent of the large wave­
number structure of the Lagrangian spectra, the Euleri­
an wave-number spectra exhibit a power-law decay in ex­
cellent qualitative agreement with experimental spectra, 
such as the one shown in Figure 2. This large wave­
number power-law decay is strictly a kinematic effect due 
to advection and is independent of the detailed structure 
of the Lagrangian spectra. It is important to account for 
this effect, however, when comparing theoretical calcu­
lations with experiment. 

We will first briefly discuss the empirical GM model 
and define the four-dimensional Eulerian frequency­
wave-number spectra. These spectra are determined by 
the distribution of linear internal-wave amplitudes in fre­
quency wand in the three-dimensional wave vector k. 
We will then outline the development of a fundamental 
theory in terms of Lagrangian variables and define the 
four-dimensional Lagrangian frequency-wave-number 
spectra. We will show that the four-dimensional Lagran­
gian frequency-wave-number spectra, rather than the 
corresponding Eulerian spectra, are fundamentally relat­
ed to the distribution of energy among the linear internal­
wave modes. Next, we will define the Eulerian variables 
in terms of the Lagrangian variables and obtain an ex­
pression for the four-dimensional Eulerian frequency­
wave-number spectra in terms of the corresponding 
Lagrangian spectra. It will become clear that, in gener­
aI, the two types of spectra are significantly different. 
We will then present a comparison between theory and 
experiment for a variety of marginal Eulerian spectra 
and demonstrate that striking agreement can be ob­
tained. Most important, we will then discuss the impli­
cations of the theory and make some suggestions for 
future theoretical and experimental investigations. 

THE OM MODEL 
The GM model uses Eulerian variables and assumes 

that the observed fields are due to a random superposi­
tion of linear internal waves. The Eulerian displacement 
can be written in the form 
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LAGRANGIAN VERSUS EULERIAN VARIABLES 

Because the relation between Lagrangian and Eulerian 
variables plays such a crucial role in the development of 
our theory, we provide this thumbnail sketch of the impor­
tant differences between Lagrangian and Eulerian variables. 
In the figure, the box labeled r depicts a fluid parcel (parti­
cle) at its undisturbed position r. The box labeled x depicts 
the same fluid parcel when it has been displaced a distance 
s to the new position x. The two methods of labeling the 
displacement are shown in the figure. Because Lagrangian 
and Eulerian variables both describe the same displacement, 
they are equal; only the labeling system is different. The 
different labeling system, however, leads to profound differ­
ences in the behavior of the variables. 

, 
X='+ SL (,, ~ ='+ SE (X, -f) 

The relation between Lagrangian and Eulerian variables. 

Newton's second law describes the relation between the 
acceleration of a specific particle and the forces that act upon 
it. Thus, it is the Lagrangian variables that must be used 
in Newton's laws, and we may write 

F = maL, 

where F is the force, m is the mass, and aL is the Lagran­
gian acceleration. The Lagrangian acceleration is simply aL 
= avL / at, so the Lagrangian equations of motion take the 
form 

M 

SE(X, t) = E 
j=-M 

x [Ch 
) 

aVL (r,t) F 

at m 

x exp (ilj . x) , 

IIj3 n -b- (t)] 
0 -1- )) 

) ) 

(1) 

where aj(t) and bj(t) are complex linear internal-wave 
amplitudes, OJ is the eigenfrequency associated with the 
jth linear internal wave, and 2M + 1 is the number of 
degrees of freedom (i.e., the number of individual 
internal-wave modes included), which will later be al­
lowed to become arbitrarily large. In Equation 1, the 
various parameters have been chosen such that Ij is a 
three-dimensional wave vector of magnitude Ij' Ijh is 
the ~orizontal component of Ij' Ijh is the magnitude of 
Ijh' Ijh is a unit vector in the direction of Ijh' Ij3 is the 
vertical component of Ij' X3 is a vertical unit vector, the 
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The Eulerian velocity changes because forces act upon the 
fluid parcel and because new fluid with a different velocity 
can move to the point x. The second type of change is re­
ferred to as advection and must be accounted for in the 
Eulerian equations of motion. Thus, the Eulerian equations 
of motion take the form 

aVE (x, t) F 
+ [VE (x, t) . V]vdx, t) = - . 

at m 

The additional nonlinear term [VE(X, t) . v]vdx, t) ac­
counts for the flow of fluid into and out of the region 
around x and makes the Eulerian equations of motion fun­
damentally more complicated than the corresponding 
Lagrangian equations of motion. The true dynamics of the 
system evolution is driven by the term Fl m, which contains 
linear forces and what we refer to as the dynamic non­
linearities. 

A considerable effort in statistical mechanics has been 
devoted to understanding the statistical distribution of the 
Lagrangian variables because the usual formulations of 
Newton's laws (e.g., Hamilton's canonical equations) have 
been in terms of these variables. A significant historical 
precedent exists for the assumption that the statistical dis­
tribution of Lagrangian variables is Gaussian: The well­
known Maxwell-Boltzmann velocity distribution describes 
a Gaussian distribution of Lagrangian (i.e., particle) veloc­
ities. Further, many studies in statistical mechanics have es­
tablished the relationship between the dynamic nonlinearities 
and the evolution of the system to a Gaussian distribution 
in terms of Lagrangian variables. No corresponding demon­
strations exist for Eulerian variables, except for the special 
case in which the Lagrangian and Eulerian variables are ap­
proximately equal. In the theory presented here, we assume 
that the Lagrangian variables show a Gaussian distribution 
and then compute the Eulerian statistical quantities by trans­
forming from the Lagrangian to the Eulerian frame. 

unit vector nj = X3 x ~h' P is the fluid density, and 
V is the volume of the ocean that is finite for now but 
will later be allowed to become arbitrarily large. In writ­
ing Equation 1, we have set the Vaisala profile equal 
to the constant N, assumed that the Coriolis vector f 
is vertical, and used periodic boundary conditions in the 
vertical and horizontal directions. Under these condi­
tions, the dispersion relation is given by 

(N2f + j'll? ) Yz 
0 - = )h )3 

) I
j 

(2) 

The expressions given by Equations 1 and 2 are well­
known in the theory of linear internal waves, and other 
detailed treatments can be found elsewhere. 7

,8 Because 
our purpose in this article is to focus on fundamental 
issues, we will make as many simplifying assumptions 
as possible. We will find later that obtaining the best 
agreement between theory and experiment requires a 
more realistic surface-boundary condition. Although it 
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is straightforward to incorporate this condition as well 
as a more realistic Vaisrua profile, they only affect de­
tails; to include them now would complicate the 
mathematics, obscure the physics, and add nothing of 
fundamental importance. 

In the linear theory, the complex amplitudes can be 
written as 

(3a) 

and 

where aj and bj are complex initial values. The verti­
cal component of Ij is given by a positive or negative 
integer multiplied by 27rID, where D is the depth of the 
ocean, and the horizontal components of Ij are given 
by positive or negative integers multiplied by 27r1 A Y2 , 

where A is the surface area of the ocean. We will desig­
nate the labeling system such that 1_ j = -Ij . Because 
the displacement must be real, it is clear from Equations 
1 through 3 that we must require that a _j(t) = a/(t) 
and b _/f) = bl(f), and that the initial values also satis­
fy the same conditions. Because of these conditions, the 
complex amplitudes associated with a given negative val­
ue of j are not independent of those associated with the 
corresponding positive value of j. If we write the com­
plex amplitudes in terms of their real and imaginary parts 
such that a/f) = ajl (t) + ia}2 (t) and bj(t) = bjl (f) + 
ibp (f), then ajm (t) and bjm (f) (l ~ j ~ M, 1 ~ m ~ 
2) are real, independent amplitudes. To completely speci­
fy the amplitudes, the initial values for all of the ajm 
and bjm must be specified. 

The essence of the GM model is the specification of 
the initial values ajm and bjm as random Gaussian vari­
ables that are described by the probability density func­
tion gE (a, b) given by 

M 2 

gE(a, b) IT IT 
j=1 m=1 

[
OJ 2 2 ] X exp - -- (ajm + bjm ) ,(4) 

2AEj 

where AEj is the Eulerian energy distribution, which is 
empirically specified by GM. Once the probability den­
sity gE (a, b) has been specified, it is straightforward to 
compute any of the various correlation functions and 
spectra of interest. The expectation value E[FE (a, b, f)] 
of any function FE (a, b, f) of the Eulerian initial values 
and time is given by 

E[Fda, b, I)l = I Fda, b, l)gE(a, b) 

M 

X IT IT dajm dbjm , (5) 
j=1 m=1 
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Statistical Mechanical Explanation of Garrett and Munk Model 

where, unless otherwise noted, all integrals are over the 
full range of the integration variable. The various Eu­
lerian displacement correlation functions CEso:{3 (X, 7) 
are defined by 

where ex and {3 denote the Cartesian coordinates of the 
displacement. We will illustrate this development by con­
sidering the correlation function associated with verti­
cal displacement. By using Equation 1 and Equations 
3 through 6, we find 

CEs33 (X, 7) 

x cOS[0(l)7]COS(l . X) d 3!, (7) 

where we took the limit that V becomes arbitrarily large 
so that the discrete variable Ij is replaced by the con­
tinuous variable I, and we also made the further 
replacement 

M 

E 
j=-M 

I d'l. 

The four-dimensional Eulerian frequency-wave-number 
spectrum associated with vertical displacement 
SEs33 (k, w) can be obtained from Equation 7 and is giv­
en by 

SEs33 (k, w) 

x exp[ -i(k . X - W7)] d7 d 3X 

+ 0[0 (k) + w]} (8) 

Finally, the three-dimensional Eulerian wave-number 
spectrum associated with vertical displacement can be 
obtained from Equation 8 and is given by 

A 1 I k~AE (k) 
SEs33 (k) = - SEs33 (k, w) dw = 2 2 

27r pk 0 (k) 
(9) 

The delta functions in Equation 8 confine the system 
to the dispersion surface described by O(k) so that the 
system is wavelike. The distribution of energy as a func­
tion of wave vector k is described by AE (k), and, as 
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previously noted, this is the quantity, or its equivalent, 
that is empirically specified by OM . Once AE(k) has 
been specified, Equation 8 can be used to compute any 
of the various one-dimensional marginal spectra required 
for a comparison with experiment. For example, the 
moored Eulerian vertical-displacement spectrum is giv­
en by 

MSEs33 (w) 1 c"", (X = 0, T)exp(iwT) dT 

3 r S Es33 (k, w) d 3k , 
(271") J 

and the horizontal tow spectrum is given by 

1 C"''' (Xl' X, = X, = 0, T 

(10) 

0) 

(II) 

A variety of other correlation functions, coherences, and 
spectra (e.g., moored horizontal velocity spectrum, 
towed vertical coherence) can be calculated similarly. In 
all cases, the results depend on the distribution AE (k). 
The crux of the OM procedure is first to assume that the 
observed fields are due to linear internal waves and then 
to adjust AE (k) to obtain agreement among a wide va­
riety of calculated statistical quantities, such as those giv­
en by Equations 10 and 11, and the corresponding exper­
iments. The ability to obtain agreement supports the as­
sumption that observed fields are at least partially due 
to linear internal waves. Such a procedure is entirely em­
pirical, however, and does not provide a physical expla­
nation for the particular choice of AE(k). Others9

, IO 

have attempted to provide an explanation but have ig­
nored the difference between Lagrangian and Eulerian 
variables; as a consequence, we believe, they have not 
been particularly successful. In the treatment we pro­
vide here, it is important to realize that although AE (k) 
is referred to as the OM energy distribution, it actually 
describes the distribution of the Eulerian amplitudes ajm 
and bjm . We will show that this distribution mayor 
may not, depending upon conditions, be the same as the 
energy distribution studied in statistical mechanics. 
Recognizing the difference will be important in obtain­
ing a fundamental theory. 
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LAGRANGIAN VARIABLES 
The Lagrangian displacement and velocity are writ­

ten in the form 

M 

sL(r, t) = E 
j =-M 

x exp (ilj . r) , 

and 

M 

vL(r, t) = E 
j = -M 

x exp(ilj . r) , 

(l2a) 

(l2b) 

where qj (t) is a complex generalized displacement, p/t) 
is the corresponding canonically conjugate momentum, 
and Y3 = X3 is a vertical unit vector. The other 
parameters in Equations 12a and 12b are the same as 
in Equation 1. By using Equations 12a and 12b, it can 
be shown that the Hamiltonian (energy function) takes 
the form 

H(p, q) 
M 1 
~ 4 OJ ( IPj (t) 12 + 1 qj (t) 12 ) 

j=-M 

+ VI (p, q) 

M 

E E 
j= 1 m= 1 

+ VI(p, q) (13) 

In the second expression of Equation 13, we have writ­
ten the complex displacements and momenta in terms 
of their real and imaginary parts such that qj (t) = 
qjl (t) + iq}2 (t) and Pj (t) = Pj l (t) + ip}2 (t); thus, 
qjm (t) and Pjm (t) (1 ~ j ~ M, 1 ~ m ~ 2) are real, 
independent, canonically conjugate dynamical variables. 
In Equation 13, we have also written the Hamiltonian 
as a sum of two parts. The first part, which we will re­
fer to as the free-field Hamiltonian, is quadratic in the 
dynamical variables and leads to linear equations of mo­
tion. The second part, VI (p, q), which we will refer to 
as the interaction potential, is of cubic and higher order 
in the dynamical variables and describes the nonlinear 
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interactions. Although we have used the eigenfunctions 
associated with linear internal waves in Equation 12, they 
have only been used as a convenient set of functions in 
terms of which to expand the displacement and veloci­
ty. As long as we retain the interaction potential 
VI (p, q), the description is fully nonlinear. A com­
pletely general case also has modes for which the quad­
ratic part of the Hamiltonian is not of the harmonic 
oscillator type given in Equation 13. For example, the 
translational modes (sometimes called geostrophic or 
vortical modes) are of the free-particle type that require 

M 2 

H(ft, q) E E Cjft~m (t) + Vdft, q) 
j =1 m=1 

where the over bars denote translational modes and Cj 

is a constant. The formulation can and eventually should 
be generalized to include these translational modes, but 
for now we will neglect them. This neglect ignores some 
potentially important issues concerning the diffusion of 
fluid parcels, but it is adequate for our purposes here. 

The Lagrangian equations of motion are obtained by 
using the Hamiltonian given by Equation 13 in Hamil­
ton's canonical equations to obtain 

and 

aH(p, q) 

apjm (t) 

aH(p, q) 

aqjm (t) 

(14a) 

-0 .. (f) _ aVI (p, q) 
}q}m a . (f) 

qjln 

(l4b) 

where the overdots denote differentiation with respect 
to time. In a general case, the equations of motion giv­
en by Equations 14a and 14b are nonlinear and cannot 
be solved exactly. The linear approximation is obtained 
by setting VI (p, q) = 0, in which case it is easy to 
show that 

qjm (t + T) = Qjm (t)cos (Oj T) + Pjm (t)sin (Oj T) , 

(l5a) 

and 

Pjm (t + T) = Pjm (t) cos (OJ T) - qjm (t) sin (OJ T) , 

(l5b) 

where Pjm (t) and qjm (t) are initial values that we have 
chosen to reference to time f rather than to zero for fu­
ture convenience. For large many-body systems, the pre­
cise specification of the initial values is not possible, and 

fohns Hopkins APL Technical Digest, Volume 10, Number 4 (1989) 

Statistical Mechanical Explanation of Garrett and Munk Model 

we must resort to statistical methods. Dealing with the 
nonlinear interactions requires perturbation or other ap­
proximation techniques. We will refer to the nonlinear 
interactions that arise from VI (p, q) as dynamic non­
linearities. Even though they can sometimes be treated 
as weak, these interactions play an important role in the 
time evolution of the relevant statistical quantities. 

Although Equations 1 and 12a are formally identi­
cal, they are different in important and somewhat sub­
tle ways. For disturbances that are small enough for all 
nonlinear interactions to be neglected, we can set a/f) 
= qj (t) and bj {f) = Pj{f). In this case, the Lagrangian 
and Eulerian descriptions are the same. It is important 
to realize, however, that the nonlinear terms associated 
with the two sets of variables are different. The dynam­
ic nonlinearities also contribute to the Eulerian equations 
of motion, but because individual fluid parcels are con­
tinually flowing into and out of the region of interest, 
an additional nonlinear flow term, eVE • V)VE' must 
be considered. We will call this term the advective non­
linearity. Thus, for larger-amplitude disturbances, the 
two sets of variables cannot be equated, and the trans­
formation between them becomes intractable. The two 
types of nonlinearities are fundamentally different. The 
dynamic nonlinearities are associated with the details of 
the forces between collections of fluid parcels, whereas 
the advective nonlinearity is associated with the flow of 
fluid parcels into and out of a fixed region of space and 
is strictly a Eulerian-frame concept. From a Lagrangian­
frame point of view, the advective nonlinearity is a 
kinematic effect. 

Independent of one's choice of variables, Lagrangian 
or Eulerian, this problem is inherently nonlinear. If all 
nonlinear interactions were neglected, then Lagrangian 
and Eulerian variables would be the same, and the lin­
ear internal-wave modes would not interact. This would 
mean that we could specify the initial amplitudes Pjm (t) 
and qjm (t) at any convenient initial time f, and Equa­
tion 15 would be valid for all later times. This would 
also mean that any initial assignment of energy to a given 
mode would remain forever because no mechanism al­
lows energy to be redistributed among the modes. Thus, 
nonlinear interactions must be present if the system is 
to evolve to a stationary state described by some statisti­
cal distribution, such as that given by Equation 4. On 
the other hand, because the nonlinear interactions for 
Lagrangian and Eulerian variables are different, we must 
expect that, in general, the statistical distribution of the 
Eulerian amplitudes will be different from the statisti­
cal distribution of the canonically conjugate Lagrangian 
variables. In statistical mechanics, the statistical distri­
bution of the canonically conjugate Lagrangian varia­
bles is usually studied. For example, Prigogine II 
introduced the phase-space density function gL (p, q, f) 
that satisfies the Liouville equation and used perturba­
tion methods to study the long-time evolution. By as­
suming that the nonlinear interactions were weak and 
by making the random phase assumption as an initial 
condition only, Prigogine obtained a master equation 
and showed that its long-time solution is of the Gauss­
ian form given by 
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M 2 

gdp, q, t) = II II 
j=l m=l 

x exp [- ~ (P]m + q]m)] ,(16) 
2ALj 

where we have suppressed explicit display of the reference 
time t, but it is to be understood that the p . and q . are }In 1m 

evaluated at t. Although the form of Equation 16 is identi-
cal to that of Equation 4, the two expressions describe 
the distribution of different sets of variables. The phase­
space density function given by Equation 16 describes 
the distribution of the canonically conjugate variables 
Pjm and qjm , and ALj is the Lagrangian energy distri­
bution that, in general, is different from the Eulerian 
distribution AEj • 

The essence of the Prigogine treatment is that weak 
nonlinear interactions will redistribute energy among the 
linear modes such that starting from a wide variety of 
initial conditions, the system will, after a sufficiently long 
time t, evolve to a state that is described statistically by 
Equation 16. For relatively short times T, we may treat 
the time evolution as linear and use the approximation 
given by Equation 15. Thus, we can use Equations 12, 
15, and 16 to compute the various correlation functions 
and spectra. Because the form of the Lagrangian dis­
placement given by Equation 12a is identical to that for 
the Eulerian displacement given by Equation 1, and be­
cause the forms of the probability density functions given 
by Equations 4 and 16 are identical, the calculation of 
the four-dimensional Lagrangian frequency-wave­
number spectrum S Ls33 (k, w) is the same as that for the 
corresponding Eulerian spectrum. We can write 

S Ls33 (k , w) 

+ 5[O(k) + w]} , (17) 

where we have again allowed the volume of the ocean 
to become arbitrarily large. The three-dimensional La­
grangian wave-number spectrum is found as in Equation 
9 to be 

k~AL (k) 

pk202(k) 
(18) 

The forms of Equations 17 and 18 are identical to 
those for the corresponding Eulerian quantities given by 
Equations 8 and 9, except for the replacement of AE(k) 
by Adk). This difference, however slight it may seem, 
is crucial to understanding the relationship between the 
energy distributions studied in statistical mechanics and 
the observed oceanic spectra such as those given by 
Equations 10 and 11. The observed spectra are usually 
obtained from the Eulerian frequency-wave-number 
spectrum SEs33(k) via Equations 10 and 11, whereas the 
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l:agrangian frequency-wave-number spectrum 
S Ls33 (k) is directly related to the distributions studied in 
stati~tical mechanics. Later we will ob!ain an expression 
for S Es33 (k) in terms of the various SLsa{3 (k) and show 
that, in general, the two types of spectra are significant­
ly different. This difference plays a key role in obtain­
ing a frrst-principles explanation for the observed oceanic 
spectra. 

Equations 17 and 18 show that the Lagrangian ener­
gy distribution AL (k) plays a crucial role in our descrip­
tion of the various Lagrangian spectra. In principle, it 
should be possible to derive AL (k) from a knowledge of 
the system interactions. Although this derivation is an 
ultimate goal and is important for a full understanding 
of the underlying physics, it is beyond our present capa­
bilities. We can, however, determine some qualitative 
features of AL (k) and show that they can provide at 
least a partial understanding of the observed spectra. Our 
treatment in this article has made important use of the 
weak interaction approximation, both through the use 
of Equation 12 for short-time evolution and through the 
use of Equation 16 for the phase-space density function. 
We now need to consider in more detail the conditions 
for the validity of the weak-interaction approximation. 
The Hamiltonian given by Equation 13 can also be writ­
ten in the form H(p, q) = T(p, q) + V(p, q), where 
T(p, q) is the kinetic energy and V(p, q) is the full 
potential energy. The potential energy can be written in 
the form 

V(p, q) = Vo(p, q) + V,(p, q) = I U(p, q, r) d'r , 
(19) 

where Vo (p, q) denotes the quadratic part of the 
potential energy and U(p, q, r) is the full potential ener­
gy density. The term U(p, q, r) is a density in terms of 
the Lagrangian label r and must be expressed in terms 
of Lagrangian variables. The potential energy density for 
a vertically stratified compressible fluid is given by 

ap(z) 
U = P(z + Su )J(SL) - P(z) - -- Su 

az 

P(z) [1 ] + - - 1 
1'-1 J(SLP-l ' 

(20) 

where we have assumed that expansion and compression 
of the fluid take place adiabatically. In Equation 20, the 
display of the dynamical variables (p, q) is suppressed, 
J(SL) is the Jacobian determinant associated with SL (see 
Equation 28 for a concise definition), p(z) is the static 
pressure at the vertical position z, and l' is the ratio of 
the specific heat at constant pressure to the specific heat 
at constant volume. For the static or undisturbed condi­
tion, SL = 0; thus, the Lagrangian label r and the Eu­
lerian label x are equal, and z = T3 = X3 is the vertical 
component of either the Lagrangian or the Eulerian label. 
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The form of the interaction potential required in 
Equation l3 is obtained by expanding the term P(z + 
SL3) in Equation 20 about sL3 = 0 and the term 
II J(sd'Y - I about J(sd = 1. The quadratic terms are 
included in Vo(p, q), whereas the cubic and higher­
order terms are included in the interaction potential 
VI (p, q). By making the expansion, the quadratic part 
of the potential energy density Vo is found to be 

where p(z) is the static fluid density, N(z) is the Vaisala 
profile defined by 

2 [1 ap(z) g ] N (z) = - g - -- + -
p(z) az c2 (z) , 

(22) 

g is the acceleration due to gravity, c(z) is the speed of 
sound defined by c2(z) = 'YP(z)1 p(z) , and we have used 
the fundamental law of hydrostatics, which is given by 
ap(z)laz = - gp(z). A full treatment of Equation 21 
yields internal waves, surface waves, sound, and the 
translational modes discussed earlier. The formulation 
presented here includes only internal waves. The theory 
can be generalized to include the additional modes, but 
for now we are concerned only with the internal waves. 
For the expansion given in Equation l3 to converge, we 
must limit both the size of the vertical component of 
the displacement and the size of the various spatial 
derivatives of all components of the displacement. To 
achieve these limitations, we must limit not only the aver­
age energy per mode but also the modal bandwidth. If 
the modes are occupied out to arbitrarily small length 
scales, then both the free-field energy and the nonlinear 
contributions from the interaction potential will be ar­
bitrarily large. It can be shown from Equation 20 that 
the nonlinear energy grows much more rapidly as a func­
tion of decreasing length scale than the free-field ener­
gy does. Thus, strong nonlinear interactions will ulti­
mately limit the participation of small length scales. 

The class of interactions just discussed will be referred 
to as internal interactions because they are present even 
when the system is isolated. Interactions with the out­
side world, such as those associated with sources and 
sinks of energy, will be referred to as external interac­
tions. We will consider a hierarchy of three cases that 
correspond to progressively greater levels of excitation 
as well as different relative strengths of the internal and 
external interactions. To limit the modal bandwidth, we 
will consider that molecular viscosity provides an abso­
lute lower bound to the participation of the small-scale 
modes. In a typical situation, the modes that correspond 
to length scales shorter than about a millimeter are 
strongly damped and thus are ineffective for storing ener­
gy. We can, therefore, think of a minimum lower bound 
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/lm (i.e., /lm is on the order of 1 mm) for the length­
scale cutoff provided by molecular viscosity. Although 
we will fmd, for internal waves, that processes other than 
molecular viscosity ultimately limit the participation of 
the small-scale modes, defining an absolute lower bound 
for the participating length scales is important in provid­
ing a framework within which to visualize the problem. 
The first case, which is the simplest and best known, 
is that for which the external interactions are negligible 
(Le., the input and dissipation of energy are negligible) 
and the level of excitation is small enough to consider 
all internal nonlinear interactions as weak. In this case, 
energy is redistributed among the linear modes by weak 
internal interactions until the system reaches equilibri­
um, at which point energy is equipartitioned across the 
accessible modes. The second case is that for which the 
time scales associated with external interactions (i.e., 
energy input and dissipation) are comparable to or short­
er than those associated with internal interactions, and 
the level of excitation, although greater than for the first 
case, is still small enough to treat the internal interac­
tions as weak. The third case is that for which the inter­
nal interactions dominate, so that the time scales 
associated with internal interactions are shorter than 
those associated with external interactions and are im­
portant at length scales that are much greater than those 
associated with molecular viscosity. We now consider 
these three cases in greater detail. 

We will find it convenient to write the average energy 
per mode in the form 

(23) 

where Eo is the maximum average energy per mode 
and hj is a dimensionless (convergence) factor that pro­
vides the structure of the modal occupation and, more 
importantly, cuts off the participation of the modes that 
correspond to small length scales. If, for example, we 
consider a system for which the internal interactions 
dominate, then we would expect the system to evolve 
near to canonical equilibrium so that the phase-space 
density function is given by Equation 16, with ALj = 
Eo and the number of degrees of freedom limited to 
length scales greater than /lm by molecular viscosity. In 
this case, the convergence factor hj is unity for modes 
that correspond to length scales greater than /lm and 
then decreases rapidly to zero for modes that correspond 
to length scales smaller than /lm' We must restrict Eo 
to be small enough to assure that the nonlinear contri­
butions are negligible, but if this condition is met, then 
Equation 16 can be used for the calculation of statisti­
cal averages. We will refer to this situation as case I. 

If we now consider a system for which external inter­
actions dominate, then we would expect the phase-space 
density function given by Equation 16, where ALj must 
be such that the modes excluded by molecular viscosity 
are not populated, but otherwise it is determined by ex­
ternal interactions that provide a heat bath (i.e., energy 
input and dissipation). In this case, the heat bath pro­
vides a horizontal length-scale cutoff /lh and a vertical 
length-scale cutoff /lv' Our use of the word cutoff does 
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not necessarily imply an abrupt cutoff. For example, the 
convergence factor hj might be such that it exhibits a 
strong power-law decay for modes that correspond to 
horizontal length scales smaller than /J-h and vertical 
length scales smaller than /J-v . This situation is thought 
to be appropriate by most of the oceanographic com­
munity. In the usual oceanographic treatment of this 
problem,12 the difference between Lagrangian and Eu­
lerian variables is ignored, and it is assumed that gener­
ation and dissipation mechanisms provide a heat bath 
that establishes the convergence factor hj such that the 
GM action spectrum is obtained. Even if the difference 
between Lagrangian and Eulerian variables were negligi­
ble, such a proposal simply transfers our lack of under­
standing to the heat bath, the detailed nature of which 
must be explained eventually. In the case of oceanic in­
ternal waves, the precise details of generation and dissi­
pation mechanisms are not completely known, but what 
is known does not explain the quasi-universal character 
of the GM spectrum. Further, existing estimates of the 
evolution rates due to internal and external interactions 
suggest that at most length scales of interest, the inter­
nal interaction rates are much larger than the external 
interaction rates. Although this proposal has some at­
tractive features, it does not resolve some important is­
sues. We will refer to this situation as case II. 

A third situation, which is the most intriguing, is also 
the most speculative. We now consider a system that is 
near canonical equilibrium but for which we cannot 
make the weak interaction approximation. In this case, 
the phase-space density function is given by 

1 [H(P, q)] 
g(p, q) = z exp - Eo ' (24) 

where Z is the partition function (Le., normalization fac­
tor), H(p, q) is the full Hamiltonian so that 

H(p, q) 

Eo 

M 2 

1: 1: [(OJ/2)(P7m + q7m ) 
j=\ m= \ 

+ Vljm (p, q)]/Eo 

M 2 

1: 1: (OJ /2) (P7m + q7m ) 

and write the phase-space density function in a form that 
looks similar to Equation 16. An important difference 
exists, however, between Ajm (p, q) and the average 
energy of the jth mode ALj in Equation 16. The pa­
rAameter ALj does not depend on Pjm and qjm, whereas 
A jm (p, q) does. Obviously, Equation 24 is, in general, 
non-Gaussian, and no amount of manipulation can 
change this. If the nonlinear interaction energy associated 
with a given mode is small relative to the free-field energy 
associated with that mode, however, then Equation 26 
yields approximately the constant Eo. On the other 
hand, if the nonlinear interaction energy associated with 
a given mode is much larger than the free-field energy 
associated with that mode, then Equation 26 yields a re­
sult much smaller than Eo, and because of the form of 
Equation 24, these modes are much less likely to be oc­
cupied. We have approximated this situation by replac­
ing Equation 26 with an average value that is indepen­
dent of Pjm and qjm and assumed that the average 
rapidly approaches zero for length scales that are smaller 
than /J-h or /J-v . Such an approximation is qualitatively 
reasonable but cannot be expected to provide detailed 
quantitative information about the exclusion of the 
small-scale modes. If it were our goal to obtain precise 
information about the three-dimensional Lagrangian 
wave-number spectrum that is directly proportional to 
Adk), then this shortcoming would be serious. We will 
find, however, that the various Eulerian spectra as well 
as the marginal Lagrangian spectra associated with 
moored measurements are not sensitive to these details, 
and, therefore, this approximation is adequate for our 
purposes here. We will refer to this situation as case III. 
The cutoff proposed in case III is equivalent to argu­
ments concerning the breakdown of internal waves due 
to local instabilities at small Richardson number. 8 

EULERIAN VARIABLES 

The relation between Lagrangian and Eulerian vari­
ables is established by the definition 

S E3 (X, I) ~ ) Su (r, I)o[x - r - sdr, I)l 

(27) 

j= \ m= \ where the Jacobian determinant J(sd is given by 

1 + V1jm (p, q)/ H Ojm (p, q) 
x (25) 

H Ojm (p, q) = (OJ /2) (P7m + q7m ), and we have writ­
ten the interaction potential as a sum over modes. We 
can now define an effective energy for the jth mode 
Aym (p, q) such that 

Ajm (p, q) 
1 + Vljm (p, q)/ H Ojm (p, q) 

(26) 
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and Ecx(3-y is the perfectly antisymmetric unit tensor of 
the third rank. Equation 27 is a well-known rela­
tion 13- \5 that can be used to express any Eulerian vari­
able [e.g., VEcx (X, t)] in terms of Lagrangian variables. 
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To gain a better understanding of Equation 27, we make 
the transformation y = r + SL (r, t) and note that 
J[sdr, t)]d3r = d 3y, so that Equation 27 can be evalu­
ated to yield 

SE(X, t) sdr, t) , (29) 

where 

x = r + SL (r, t) . (30) 

The expressions given by Equations 29 and 30 consti­
tute the usual relation between Lagrangian and Euleri­
an variables. 8,16 

Although Equations 29 and 30 appear to be simple, 
they actually disguise a complicated procedure. The dif­
ficulty is that implementing Equation 29 as a point trans­
formation requires Equation 30 to be inverted to obtain 
r as a function of x and, for all but trivially simple 
Lagrangian displacement fields, that inversion is intrac­
table. An important recent contribution 5,6 was the 
recognition that even though Equation 27 does not 
generate a useful exact point relationship, it can be used 
for calculating statistical averages and leads to entirely 
tractable expressions. The key to achieving this result is 
to write the delta function in Equation 27 in terms of 
its Fourier transform so that 

o[X - r - sL(r, t)] 

x ) exp(im· Ix - r - SL (r, I)]] d 3m, (31) 

where m is the Fourier transform variable. 
If we now use Equations 27 and 31 and use the phase­

space density function given by Equation 16 to compute 
the Eulerian displacement correlation function, then the 
need to invert Equation 30 is avoided and a complicat­
ed but tractable expression is obtained. 

The details of the following calculations are given in 
a recent publication,5 henceforth referred to as AJ. By 
using Equation 12a to express the displacements in terms 
of the canonically conjugate dynamical variables and by 
approximating the time evolution for relatively short 
times 7 by Equation 15, it is shown in AJ that the Eu­
lerian correlation function CEs33 (X, 7) is given by 

CEs33 (X, 7) 

3 r r M33 (R, 7, m) 
(271") J J 

x exp[im . (X - R)] d 3 m d 3 R , (32) 
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where 

M33 (R, 7, m) = E[su (r, t)su (r' , t') 

X J[SL (r, t)]J[SL (r', t')] 

x exp{im . [sdr, t) - sdr ' , t')]}] 

(33) 

R = r - r', and 7 = t - t'. The four-dimensional 
Eulerian frequency-wave-number spectrum is found 
from Equation 32 to be 

S Es33 (k, w) 

x exp(ik . X - W7) d7 d 3 X 

) ) M33 (R, T, k) 

x exp(ik . R - W7) d7 d 3 R . (34) 

The expression for the frequency-wave-number spec­
trum given by Equation 34 is a central result. Its practi­
cal utility, however, depends on obtaining a tractable 
expression for the function M33 (R, k, 7) defined by 
Equation 33. If the phase-space density function is of 
the Gaussian form given by Equation 16, then by using 
the procedure described in AJ, it is always possible to 
obtain an exact expression for M33 (R, k, 7). Although 
the calculations given in AJ are straightforward, they are 
lengthy, and the final expression for M33 (R, k, 7) is 
complicated. Fortunately, examining all of the details 
of that result is not necessary to discuss the important 
features of the Eulerian spectra. We will make no at­
tempt to provide complete calculations, choosing instead 
to refer to AJ for details and only quote results in this 
article. It is shown in AJ that the frequency-wave­
number spectrum given by Equation 34 exhibits differ­
ent properties depending on the wave numbers involved. 
The first wave-number regime corresponds to small wave 
numbers and is defined by requiring that 

(35) 

where Vh and Vy are the root-mean-square horizontal 
and vertical Lagrangian displacements. If all of the ka 
are small enough to assure that the expression given by 
Equation 35 is satisfied, then it is shown in AJ that 

We thus find that for wave numbers that are small 
enough to assure that Equation 35 is satisfied, the Eu­
lerian and Lagrangian frequency-wave-number spectra 
are approximately equal. 

357 



Allen and Joseph 

The opposite extreme is the case for which at least 
one of the k ex is large enough to assure that 

(37) 

In this case, it is shown in AJ that 

Y2 

SEs33 (k, w) ,::::: ( 7r ) 

'Yl~k~ + 'Yl ~ k~ 

(38) 

where 'Ylh and 'Ylv are the root-mean-square horizontal 
and vertical Lagrangian velocities and k is a unit vector 
in the direction of k. An explicit expression for 'lr(k) is 
given in AJ, but for our purposes here, it is only impor­
tant to note that 'lr(k) depends on the direction of k but 
not on its magnitude. It follows directly from Equation 
38 that for large k, the four-dimensional Eulerian 
frequency-wave-number spectrum decays as 1/ k 6

• Fur­
ther, unlike the corresponding Lagrangian frequency­
wave-number spectrum given by Equation 17, the Eu­
lerian frequency-wave-number spectrum is not propor­
tional to the delta functions that confine the system to 
the dispersion surface. Thus, from an Eulerian-frame 
point of view, at large wave numbers, the dispersion sur­
face is completely smeared and the system is not wave­
like. We have found that at small wave numbers, the 
Eulerian and Lagrangian frequency-wave-number spec­
tra are approximately equal. At larger wave numbers, the 
Eulerian frequency-wave-number spectrum decays as 
1/ k6

, whereas the Lagrangian frequency-wave-number 
spectrum decays as the the convergence factor h(k) (see 
Equation 23). Most importantly, Equation 38 is indepen­
dent of the detailed nature of h(k). Thus, whereas the 
Lagrangian spectra (see Equations 17 and 18) are direct­
ly sensitive to the details of h(k), the corresponding Eu­
lerian spectra are not. 

Some of the one-dimensional marginal spectra, such 
as the frequency spectra and moored coherences dis­
cussed in the last section, are obtained by integrating over 
all wave numbers. In the case of both Lagrangian and 
Eulerian spectral such integrals are dominated by con­
tributions from small k ex where the Eulerian and 
Lagrangian frequency-wave-number spectra are approx­
imately equal. Hence, the one-dimensional Eulerian fre­
quency spectra and coherences are approximately equal 
to the corresponding Lagrangian spectra and coherences. 
The horizontal tow spectrum, on the other hand, is an 
Eulerian spectrum and presents a different situation. It 
can be obtained from the frequency-wave-number spec­
trum given by Equation 34 by integrating over w, set­
ting kl = K, and integrating over k2 and k 3 • For small 
K such that the product Kllh is somewhat less than uni­
ty, the integrals are dominated by small values of k2 

and k3 so that the Eulerian tow spectrum is approxi­
mately equal to the one-dimensional Lagrangian horizon-
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tal wave-number spectrum. For larger K such that the 
product Kllh is somewhat larger than unity, the expres­
sion for the frequency-wave-number spectrum given by 
Equation 38 is appropriate and a significantly different 
result is obtained. By setting kl = K and integrating 
Equation 38 over w, k2' and k 3' it can be shown that 

w 
3 ' K 

(39) 

where an expression for W, which depends on N, j, 
Eo, fJ-h, and fJ-v, is given in AJ. We have thus found that 
the one-dimensional Eulerian horizontal tow spectrum 
is equal to the Lagrangian horizontal tow spectrum at 
small K and decays as K - 3 at large K. 

DISCUSSION 

We first consider the case of the moored spectrum 
shown in Figure 1 and compare it with the Lagrangian 
frequency spectrum, which can be computed from Equa­
tion 17. Although the moored spectra measured in some 
experiments are in terms of Eulerian variables and in 
others are in terms of Lagrangian variables, it is shown 
in AJ that the moored spectra are dominated by small 
wave numbers where the two types of spectra are approx­
imately equal. Thus, a comparison with the Lagrangian 
frequency spectrum for all types of moored experiments 
is appropriate. To obtain an explicit expression for the 
moored frequency spectrum MSLs33 (w), we must specify 
an explicit expression for the convergence factor h(k). For 
this purpose, we have taken h(k) = exp[ - Y2 (p,~k~ + 
fJ-~k~)]. It is shown in AJ that the moored spectra are in­
sensitive to the details of h(k), and that the only impor­
tant feature is the introduction of the two length scales 
fJ-h and fJ-v, at which the contributions from small 
horizontal and vertical length scales are suppressed. The 
Gaussian form for h(k) is for mathematical convenience 
only, and any other choice that introduces length-scale 
cutoffs will produce essentially the same results. The ex­
pression just given for h(k) can be used in Equation 17 
to obtain an expression for MSLs33 (w) that is in excellent 
agreement with experiment at all frequencies except those 
very near the spectral cutoff at N. The disagreement near 
N is due to our use of periodic boundary conditions in 
the vertical direction, and replacing these with a clamped 
surface-boundary condition yields excellent agreement 
with experiment at all frequencies. An expression for 
MSLs33 (w) that employs a clamped surface-boundary 
condition and depends on the parameters Eol p, fJ-h, fJ-v, 
N, j, and the depth r3 is obtained in AJ. In the follow­
ing comparison, the values of N, f, and r3 are chosen 
to correspond to the particular experiment under consider­
ation' and we have adjusted the parameters Eol p, fJ-h, 

and fJ-v to obtain a reasonable comparison. It is shown 
in AJ that the assumed values for these parameters are 
consistent with the situation referred to as case III. In 
Figure 3, the black curve is a plot of the moored vertical 
displacement spectrum given in AJ where, for the pur­
pose of this plot, we have chosen fJ-h = 700 m, fJ-v = 
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Figure 3. A comparison between theory and experiment for 
a typical moored vertical-displacement spectrum. (Adapted from 
Ref. 3.) 

7 m, Eo/p = 1.2 X 105 J . m 3/ kg"3 = 350 m, N = 
3.2 cycles per hour, and! = 0.035 cycles per hour. The 
red curve in Figure 3 is the Cairns and Williams result 3 

shown earlier in Figure 1. The excellent qualitative agree­
ment is obvious. 

We now consider an example of a tow spectrum. The 
tow spectra are always Eulerian and mostly at wave num­
bers for which the Eulerian and Lagrangian spectra are 
different. The example we consider is the horizontal tow 
spectrum HTSEs33 (K) given by Equation 39, which was 
found at large wave numbers to decay as K - 3. This de­
cay is similar to that observed experimentally and is in­
dependent of the detailed nature of the Lagrangian 
convergence factor. The red curve in Figure 4 is a plot 
of the horizontal tow spectrum given by Equation 39, 
where W was calculated in AJ [we again use the Gauss­
ian form for h(k)], and for the purpose of this plot, we 
have chosen Eo/p = 1.4 X 105 J . m3/kg, fJ.h = 700 m, 
fJ.v = 7 .m,'3 = 700 m, N = 2.5 cycles per hour, and 
! = 0.035 cycles per hour. The blue curve is the K = 
o limit of the Lagrangian horizontal tow spectrum ob­
tained from Equation 18, which is approximately the level 
of the Eulerian horizontal tow spectrum at small K. The 
points plotted as a scattergram in Figure 4 are the Katz 
results4 shown earlier in Figure 2. This plot is typical of 
towed measurements. Although the agreement between 
our theoretical result and experiment is not perfect, the 
qualitative similarity is apparent. We have not computed 
the theoretical Eulerian spectrum for wavelengths between 
1 and 10 km because a numerical integration would be 
required since these wavelengths are not in either asymp­
totic region. Near 1 km, however, the red curve breaks 
to a smaller slope and finally merges with the blue curve 
at approximately 10 km. A noticeable difference between 
our theory and experiment occurs at very small wave 
numbers (i.e., near the blue curve in Figure 4) where the 
Lagrangian and Eulerian spectra are approximately equal. 
This difference may indicate a departure from canonical 
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Figure 4. A comparison between theory and experiment for 
a typical vertical-displacement horizontal tow spectrum. (Adapt­
ed from Ref. 4.) 

equilibrium at small wave numbers. Such a departure 
would not be surprising, because source contributions are 
thought to be strong at these small wave numbers. Over­
all, the agreement obtained is excellent, and the values 
of the parameters used in generating Figure 4 are nearly 
the same as those used in generating Figure 3. This situ­
ation demonstrates consistency between two significant-
1y different experiments and shows that the values used 
in generating both figures are completely reasonable. 

A more extensive comparison between theory and ex­
periment is given in AJ, and the additional comparisons 
are just as favorable as those shown in Figures 3 and 4. 
By considering the strength of the dynamic nonlinear in­
teractions, it is also shown in AJ that all of the values 
of the various parameters required to obtain a favorable 
comparison with experiment are consistent with the situ­
ation we have referred to as case III. Although our com­
parison with experiment has tended to emphasize 
canonical' equilibrium via case III, the more important 
result is our relation between Eulerian and Lagrangian 
spectra and the demonstration that the two can be sig­
nificantly different. None of the marginal Eulerian spec­
tra that are usually measured are very sensitive to the 
details of the underlying Lagrangian spectra. Thus, the 
Lagrangian spectra may differ considerably from canon­
ical equilibrium and still result in Eulerian spectra that 
are entirely similar to those obtained from case III. The 
fundamental dynamical processes directly affect the 
Lagrangian spectra but are masked in the Eulerian spec­
tra by the advective tail. Experiments that focus on this 
advective Eulerian tail cannot yield information about the 
fundamental dynamical processes. 

We wish to emphasize that all existing tow measure­
ments are Eulerian and consequently provide detailed in­
formation about the advective tail only. Our results show 
that the advective tail is devoid of information about the 
fundamental dynamical processes. Experiments that ob­
tain Lagrangian information are required for studying 
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these fundamental dynamical processes. Lagrangian mea­
surements are fluid-parcel following measurements, and 
this feature is important if we are to retain a direct cor­
respondence with the particles of Newtonian mechanics. 
An 'example of a Lagrangian measurement is a dye mea­
surement with coded dye or a dye measurement per­
formed in conjunction with vertical temperature 
measurements. In addition, other experiments might be 
suggested; clearly, some measurement that explores this 
issue is critically needed. 

Another interesting and potentially important result is 
that the four-dimensional Eulerian frequency-wave­
number spectrum is not confined to the dispersion sur­
face. As far as we know, no experimental evidence 
concerning this issue exists. The Doppler sonar observa­
tions of Pinkel l7 are a step in this direction but have 
yielded only two-dimensional frequency-wave-number 
spectra. Because the two-dimensional spectra are obtained 
by integrating over two components of the three­
dimensional wave vector, information concerning the ex­
istence of delta functions (i.e., sharp peaks) that confine 
the system to the dispersion surface is lost. Our expres­
sions can be used to compute theoretical expressions to 
be compared with Pinkel's results. Although such a com­
parison would certainly be interesting and the calculations 
are tractable, they are also nontrivial and have yet to be 
completed. 

Although the Eulerian spectra are insensitive to the de­
tails of the convergence factor h(k), the length scales Jlh 
and Jlv play an important role. So far we have treated 
these scales as adjustable. In principle, it should be pos­
sible to compute them from a detailed knowledge of the 
nonlinear interactions once the level Eo has been speci­
fied. Such an investigation is important for a full under­
standing of the physics, but it is beyond the scope of our 
considerations in this article. It has not been our intent 
to present this work as a fait accompli. Rather, we have 
sought to present only enough evidence to support a rea­
sonable argument in favor of case III and, more impor­
tantly, to elucidate the differences between Lagrangian 
and Eulerian spectra. Many important, and we believe 
fruitful, investigations remain to be done, including a 
more detailed investigation of strong nonlinear interac­
tions within the Lagrangian frame and the role they play 
in establishing the length scales Jlh and Jlv ' Further, as 
noted previously, we have neglected the translational 
modes. By so doing, we have ignored possible alterations 
to the spectra in regions with substantial mean currents, 
as well as some potentially important issues concerning 
diffusion. The methods we have introduced here can also 
include the translational modes and thus can be consid­
ered for a variety of additional investigations. 

Although the emphasis in this article has been on in­
ternal waves, the methods and major conclusions are also 
applicable to surface waves and possibly even to some 
aspects of atmospheric motions. Our major point is that 
for any of these systems, the fundamental dynamical pro-
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cesses are easier to describe in terms of Lagrangian vari­
ables, but most measurements are easier to describe in 
terms of Eulerian variables. The two sets of variables are 
different, but the consequences of their differences have 
not been adequately considered. This work has shown that 
significant differences between Lagrangian and Eulerian 
statistical quantities can exist and that care must be tak­
en to distinguish between the two types of variables. Con­
cepts such as nonlinear transition rates and the role they 
play in the approach to equilibrium, which have been ex­
tensively studied in statistical mechanics in terms of 
Lagrangian variables, do not lead directly to explanations 
for the shapes of the various empirical Eulerian spectra. 
To obtain the agreement illustrated in Figures 3 and 4, 
we had to distinguish carefully between Lagrangian and 
Eulerian variables and account in detail for the effects 
of advection. We introduced a theoretical procedure that 
enables us to deal with this problem and is applicable to 
various physical systems. 
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