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METAL NITRIDE SEMICONDUCTORS 
FOR OPTICAL APPLICATIONS 

The structural and electronic properties of wide-bandgap semiconductors consisting of aluminum, gal­
lium, and indium nitrides and their alloys make them excellent candidates for use in constructing solid­
state optical devices operating from the visible to the ultraviolet. Fabrication of these materials is being 
approached from two perspectives: reactive magnetron sputtering and metal-organic chemical vapor depo­
sition. Successful synthesis of these metal nitrides will ultimately lead to simple (light-emitting diode) 
and complex (laser) sources, nonlinear optical elements, and semiconductor detectors, all matched to 
the wavelength of the spectral region of interest. 

INTRODUCTION 
Solid-state electronic devices that function as sources 

and detectors of light have made possible products rang­
ing from simple light-emitting diodes, common in every­
day life, to more complex systems, such as the compact­
disk player and optical mass storage media for com­
puters. Such devices depend on the production of ex­
tremely pure, highly crystalline semiconductor materials 
and the reproducible formation of either p-n or 
metal-semiconductor junctions. 

Historically, semiconductor science has progressed 
from the study of elemental solids such as silicon and 
germanium to the study of compound materials such as 
gallium arsenide (GaAs) and cadmium telluride (CdTe). 
The progress resulted from the need for devices that can 
operate at higher speeds and for materials that display 
divergent bandgap properties. The higher operating 
speed of GaAs-based structures has resulted in solid-state 
devices that operate at microwave frequencies, and the 
larger bandgap materials, such as CdTe, have led to the 
development of semiconductor optical devices that oper­
ate throughout the visible region of the electromagnetic 
spectrum. 

Recent advances in tailoring the physical properties 
of bulk semiconductors have been matched by deposition 
technologies that allow the growth of nearly single-crys­
talline thin fJ.lms with fIlm thickness controlled to atomic 
dimensions. The techniques-molecular-beam epitaxy 
and metal-organic chemical vapor deposition-require 
ultraclean conditions and depend on a slow, layer-by­
layer growth of material at high temperature (1273 K) 
to promote epitaxy. Such epitaxial film structures form 
the basis of semiconductor superlattices-atomically thin 
alternating layers of different materials. The prototypical 
system in these studies is the gallium aluminum arsenide 
(GaxAI1 _xAs) alloy, which has been widely investigated 
because high-quality GaAs and AlAs are available and 
the crystal-lattice parameters of the two are very nearly 
identical. Much interesting science, such as the integral 
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and fractional quantum Hall effects, and important tech­
nology, such as quantum-well devices, multiple-quan­
tum-well lasers, and high-electron-mobility transistors, 
have been developed using these materials and tech­
niques. The only limitation of the GaxAI1 _x As system 
is that the relatively small bandgaps of GaAs (1.35 e V) 
and AlAs (2.16 eV) restrict optical sources based on these 
materials to the red and near infrared regions of the spec­
trum. Because of that limitation, interest in materials 
having larger bandgaps has been renewed. 

APPROACH 
We have begun studies on a class of wide-bandgap 

semiconductors that hold great promise for use as light 
sources, detectors, and nonlinear optical elements cover­
ing the visible and extending into the ultraviolet regions 
of the electromagnetic spectrum. Members of this class 
of compounds include aluminum nitride (AIN), gallium 
nitride (GaN), and indium nitride (InN). AIl are isomor­
phous (of the same structure), crystallizing as hexagonal 
phases characteristic of wurtzite 1 (Fig. 1). Moreover, 
they all exhibit a direct bandgap,2,3 a necessary criterion 
for high-efficiency semiconductor optical devices. Lat­
tice parameters, bandgaps, and the wavelengths of light 
equivalent to the bandgaps are listed in Table 1. 

Table 1-Semiconductor parameters of aluminum, gallium, 
and indium nitrides. 

Lattice 
parameters 

(A) Bandgap Wavelength 
a c (eV) (nm) 

AlN 3.111 4.978 6 200 (UV) 
GaN 3.186 5.178 3 400 (near UV) 
InN 3.541 5.705 2 600 (red) 
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Figure 1-View down the e axis of the wurtzite crystal struc­
ture of indium nitride. Nitrogen atoms at - e/8 are dashed; those 
at 3e/8 are solid. The indium atoms lie at e = O. The formally 
In3 + and N3- ions exhibit fourfo ld (essentially tetrahedral) 
coordination. 

As the table indicates, the bandgaps of these three 
compounds range from 2 to 6 eY, corresponding to emit­
ted (or detected) light of wavelength from 600 (red) to 
200 nm (ultraviolet), a very important spectral region for 
consumer and military optical devices. Note in Table 1 
that the variation in lattice constant between members 
of the series is fairly small. One ramification of the small 
variation is that alloys can be formed throughout the 
entire compositional range. 4

,5 Moreover, the similarity 
of the a-axis lattice constants makes feasible the forma­
tion of semiconductor superlattices with c-axis texture. 

In addition to the intriguing possibility of constructing 
optical sources and detectors that can operate at any 
wavelength throughout the visible and ultraviolet portion 
of the spectrum, metal nitrides can also form the basis 
for nonlinear optical elements. As previously mentioned, 
these materials crystallize in a wurtzite structure with 
point group symmetry 6mm . Such crystals belong to a 
class of noncentrosymmetric materials that have non­
zero values for both the even and the odd terms of the 
higher-order optical susceptibility. 6 Consequently, these 
substances are capable of exhibiting nonlinear effects 
such as optical second-harmonic generation and bista­
bility. In fact , preliminary work on AlN6,7 and GaN8 

demonstrated second-harmonic generation in films of 
both materials, with values for the coefficients of the 
nonlinear optical susceptibility that compare favorably 
with other wide-bandgap semiconductors such as cad­
mium sulfide (CdS), zinc sulfide (ZnS), cadmium 
selenide (CdSe), and silicon carbide (SiC). These results, 
coupled with the excellent thermal properties of the metal 
nitrides, make AlN and GaN outstanding candidates for 
nonlinear optical materials for short-wavelength, high­
power applications. 

Although the situation outlined so far is optimistic, 
significant problems with these materials make investigat­
ing them particularly challenging. The emphasis placed 
on these and other compound semiconductors by semi­
conductor science and engineering has led to new prob­
lems in the production of device-quality material. The 
most important of which is nonstoichiometry, a devia-
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tion from the ideal chemical composition of the com­
pound. For the elemental semiconductors, such as sili­
con and germanium, the technical problems centered on 
removing all trace impurities. Once those problems were 
solved, a single crystal of the purified material was then 
of device quality and could be doped p-type or n-type, 
as necessary. For compound semiconductors, the prob­
lems are magnified: not only do the constituents have 
to be exceedingly pure, but the material must also be 
stoichiometric. The stoichiometry for GaAs can be de­
fined as the state of the system in which the ratio of the 
number of gallium atoms to the number of arsenic atoms 
is exactly one. Slight deviation from this state leads to 
material that is practically unusable. Over the last 20 
years, considerable effort has gone into solving the prob­
lem of nonideal compound formation in GaAs 9, and it 
is now possible to form device-quality GaAs by a variety 
of techniques. 

The situation now with metal nitride semiconductors 
is analogous to that in the early years of GaAs technol­
ogy. Significant technical obstacles must be overcome 
before use of such materials becomes practical. The main 
concern now is the propensity of the materials to decom­
pose chemically at moderately high temperatures, ac­
cording to the reaction 

MN - MN I _ x + x / 2 N2 t , (1) 

where M = Al, Ga, or In. It is essentially such result­
ing small deviations from stoichiometry that are at the 
focus of our research on metal nitride semiconductors, 
much as comparable deviations led earler researchers to 
develop techniques for producing stoichiometric GaAs. 

Although all compound materials will decompose if 
temperatures are high enough, the metal nitrides follow 
a thermodynamic path that causes them to decompose 
before they reach the melting point. 10 As a result, it is 
practically impossible to grow a single crystal of a stoi­
chiometric metal nitride semiconductor by typical solu­
tion or melt techniques. Experimenters have therefore 
turned to a variety of nonequilibrium techniques, such 
as vapor-phase epitaxy, liquid-phase epitaxy, and mole­
cular-beam epitaxy in an attempt to grow high-purity 
metal nitrides. These techniques, although an improve­
ment, still produce materials with high free-carrier con­
centrations (> 10 18 cm - 3) and low carrier mobilities (at 
best 200 cm2y - I S - I ) , characteristic of defect-ridden, 
nonstoichiometric compounds. The high-temperature 
processing demanded for growing epitaxial films II 
causes decomposition according to Eq. 1. 

The focus of our research is to explore lower-temper­
ature processes that should allow the formation of ma­
terials having a minimum defect density while retaining 
the epitaxial nature of the films that is so important for 
constructing devices. We have chosen to pursue two par­
allel paths toward developing high-quality materials: 
metal-organic chemical vapor deposition and radio-fre­
quency reactive magnetron sputtering. We will describe 
the two techniques in detail and discuss the preliminary 
results obtained with materials that have been produced. 
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We use a common complement of test and analysis 
equipment to ascertain the quality of the semiconductors 
produced. Included are a variety of optical, electrical, 
magnetic, and structural analysis tools. Figure 2 shows 
the techniques commonly used for characterizing 
materials. 

RADIO-FREQUENCY REACTIVE 
MAGNETRON SPUTTERING 

The radio-frequency reactive magnetron sputtering 
(RFRMS) technique employs RF excitation at 13.56 
MHz, a magnetron sputtering source, and a chemically 
reactive gas to deposit thin films of compound materials. 
Sputtering in general has long been used for the deposi­
tion of a wide variety of substances such as metals, al­
loys, and dielectrics, but infrequently used to produce 
device-grade semiconductors, since other techniques gen­
erally produce higher-quality films of typical semicon­
ductors. We believe, however, that RFRMS, described 
shortly, has considerable potential for producing high­
quality metal nitride semiconductors. 

The basis of the sputtering process 12 is the produc­
tion of a plasma by RF or DC excitation in a rarified 
atmosphere typically consisting of an inert gas (common­
ly argon, Ar) with perhaps a small amount of reactive 
gas (typically nitrogen or oxygen) added. The energetic 
ions of the plasma are confined by means of a strong 
magnetic field and are accelerated toward a target ma­
terial (electrically conducting substances for DC sputter­
ing; either conductors or insulators for RF sputtering). 
When the ions strike the target, some of the material 
is ejected onto a substrate located nearby. The result is 
the deposition of a thin film of the target material if only 
an inert gas is used or in a thin film of a compound if 
a reactive gas is present in the sputtering chamber. 
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Figure 2-Typical battery of physical probes applied to thin­
film semiconductors and devices. 
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The magnetron sputtering system used at APL is built 
on a liquid-nitrogen-trapped, diffusion-pumped vacuum 
station having base pressures on the order of 3 JLPa. Fig­
ure 3 shows a block diagram and photograph of the sys­
tem. It features dual magnetron sputtering sources 
mounted below a rotatable substrate platform. Magne­
tron sputtering guns were chosen for their small size and 
high sputtering rates. Directly above the sputtering guns 
are shutters that allow one or both guns to be blanked 
off during the sputtering operation. The substrate plat­
form was designed to rotate so that superlattice films 
can be deposited by moving the substrates over the two 
different guns in a predefined sequence. The substrates 
can be heated by back illumination using a quartz lamp. 
The temperature is monitored by a thermocouple; the 
thermocouple output is fed to a microprocessor-based 
temperature controller to vary the temperature in a man­
ner defined by the user. A variety of pressure-measuring 
instruments are incorporated into the system, including 
a capacitance manometer for high-accuracy measure­
ment in the pressure range used for sputtering. The 
amounts of inert (Ar) and reactive (N2) gases are con­
trolled by a partial-pressure analyzer and controller, 
based on a quadrupole mass spectrometer. 

The targets used to produce the metal nitride semicon­
ductors are high-purity metals-AI and In-and the ni­
trides-AIN, GaN, and InN. When the metal targets are 
used, the reaction during deposition is 

(2) 

The nitrogen content of the material, and thus its 
physical properties, can be controlled by varying the 
amount of N2 gas in the sputtering chamber. We out­
line here a series of experiments conducted on AlN and 
InN to illustrate the control over the properties of the 
semiconductors by this process. 

The sputtering target used for the AIN studies was 
99.999070 pure aluminum metal, the substrates were ran­
domly oriented single-crystal sapphire, and the various 
N2 concentrations used ranged from 50 to 5070. When 
the N2 concentration was high, the material was high­
ly resistive (-10 120 cm), nearly clear, and had an op­
tical absorption spectrum (Fig. 4) typical of a semicon­
ductor with a bandgap of 6 eV. When the N2 concen­
tration was low « 12070), the deposited AIN was of 
much lower resistivity ( - 10 - 20 cm) and was highly ab­
sorbing (black). The resistivity behavior of deposited AIN 
as a function of nitrogen content in the sputtering cham­
ber is shown in Fig. 5, where it is evident that the mate­
rial undergoes a sharp metal-to-insulator transition, and 
the resistivity changes by 10 orders of magnitude. Thus, 
by varying the amount of nitrogen in the system, the 
electrical resistivity at room temperature can be varied 
by more than 10 orders of magnitude (from that of one 
of the best insulators known to that of a metallic con­
ductor). 

Obtaining the electrical transport properties of the in­
sulating AIN materials is problematic because of two ma-
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Figure 3-The magnetron sputtering 
system: (a) schematic diagram; (b) 
photograph . 
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jor experimental complexities: the first is the difficulty 
of obtaining reliable ohmic contacts between metals and 
wide-bandgap semiconductors,13 and the second arises 
from the general electronic difficulties associated with 
measuring extremely high resistances. 14 The contact 
problem was solved by fabricating graded contacts. Af­
ter the deposition of an insulating film, the procedure 
is to position the substrate so that a mask can be placed 
in front of it. The substrate and mask are then moved 
back to the sputtering location, and a graded contact 
is sputtered onto it. The graded contact is formed by 
first sputtering a layer of AlN that is compositionally 
equivalent to the underlying layer. The Ar/N2 ratio is 
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then slowly and continuously decreased until a contact 
is built up that varies from insulating AlN to metallic 
aluminum. To prevent the formation of a surface oxide 
layer, all the manipulations are performed without 
breaking the vacuum. 

A high-impedance Dewar insert for measuring the 
temperature-dependent resistance of the required insulat­
ing metal nitrides has been designed and constructed at 
APL. The system is based on a digital electrometer hav­
ing a high input impedance (10 14 0), a constant-current 
source capable of reproducible subpicoampere outputs, 
and a custom sapphire sample holder. As is standard 
in measurements of high impedance, the electrical leads 
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Figure 4-Absorption spectrum of a sputtered thin film of AIN . 
The interference pattern at long wavelengths is characteristic 
of the thickness and refractive index of the films. 

10.-----~------~----~------~----~ 

8 

2 

O~----~------~------L-----~----~ 
8 10 12 14 16 18 

Percent nitrogen 

Figure 5-Logarithm of the resistivity versus percent nitrogen 
in the sputtering gas for a thin film of AIN . A metal-to-insulator 
transition occurs near 12%, precipitating a change in resistance 
of about 10 orders of magnitude. 

are in a guarded configuration to minimize settling times. 
The van der Pauw technique l 5 is used to determine the 
electrical transport behavior of the films. 

For InN, the target used was 99.9990/0 pure indium 
metal, and the substrates were randomly oriented sin­
gle-crystal sapphire or high-purity fused quartz. Sputter­
ing parameters were varied to find optimal conditions. 
Previous work on InN 16 has shown that sputtering is a 
very promising technique for depositing material having 
high carrier mobility. The studies outlined here involve 
the DC sputtering of a metal target for evaluating the 
effectiveness of the sputtering system. Experiments be­
gan by sputtering indium metal in an atmosphere of pure 
nitrogen at various pressures. The substrates were held 
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Figure 6-Absorption spectrum of a sputtered thin film of InN. 
The inset is a plot of absorption coefficient squared versus pho­
ton energy. The extrapolated value of the bandgap is 1.7 eV. 

at room temperature to minimize decomposition reac­
tions. Figure 6 shows the optical absorption spectrum 
of a film of InN produced in this way; it is typical of 
a semiconductor with a 1.7-eV bandgap. X-ray struc­
tural analysis reveals that these materials are columnar 
in nature, with the c-axis essentially normal to the film 
plane. The quality of the films as a function of sputter­
ing pressure was evaluated by measuring the electrical 
transport properties of the film . 

The measurement of film resistivity and Hall coeffi­
cient allows the carrier mobility and carrier concentra­
tion in the semiconductor to be determined. It is evi­
dent in Fig. 7a that a maximal mobility is obtained at 
a pressure of about 5 /Lm of pure N2 • This pressure was 
then used to evaluate the effect of varying the amount 
of nitrogen in the material by adding argon to the sput­
tering ambient. As seen in Fig. 7b, the carrier concen­
tration is rising steadily as argon is added to the system, 
characteristic of increasing nitrogen loss. Figure 8 shows 
the temperature dependence of the electrical transport 
properties of InN films. The resistivity of the material 
increases as the temperature is decreased (Fig. 8a), as 
is expected of a semiconductor. The carrier mobility im­
proves slightly as the sample cools (Fig. 8b), which is 
typical of a semiconductor with a high charge-carrier 
density. 

The results of these studies, though promising in some 
respects indicate that DC sputtering from metal targets 
will not produce materials of sufficiently high quality 
for use in semiconductor devices. A logical reason for 
this failure is best illustrated by referring to Eq. 2. The 
metal undergoing reactive sputtering does not incor­
porate enough nitrogen to make a stoichiometric semi­
conductor. Confidence in RFRMS as a technique for 
deposition of these materials can be gleaned from the 
chemical reaction, 

MNI _x + y / 2 - MNI -x+y" (3) 

If the end product of the chemical reaction of Eq. 2 is 
used as a sputtering target and is RF-sputtered (neces-
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sary because of the nonconducting nature of the mate­
rial) so that it undergoes the chemical reaction of Eq. 
3, then the material will have fewer native defects caused 
by nitrogen deficiency. This theory has been borne out 
somewhat by an Australian group who reported produc­
ing the highest quality InN to date by using the RFRMS 
technique on a "nitrided" indium target. 16 Continued 
similar efforts should produce materials that are vastly 
superior to those now produced. The RFRMS technique 
is then a prime candidate for producing high-quality 
epitaxial semiconductors and superlattices at suitably low 
tern peratures. 

METAL-ORGANIC CHEMICAL 
VAPOR DEPOSITION 

As its name implies, metal-organic chemical vapor 
deposition (MOCVD) is a vapor-growth technology that 
uses metal-organic precursors as at least one of the con­
stituents of the deposit. It was first developed over 20 
years ago, but wide acceptance by the semiconductor 
community was delayed because metal-organic sources 
pure enough for device applications were not available. 
Rapid progress in MOCVD over the last five years has 
established it as the preferred material-growth techno 1-
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Figure 8-Temperature dependence of (a) resistivity, (b) num­
ber of charge carriers, and (c) carrier mobility for a sputtered 
thin film of InN. 

ogy for a wide range of semiconductor devices, includ­
ing sources and detectors for fiber-optic communications 
systems, heterojunction solar cells, mobility-enhanced 
microwave devices, and various quantum-well structures. 
MOCVD is now being developed for other material sys­
tems ranging from compounds and a1l9Ys to supercon­
ductors with high critical temperature (Tc). 

A typical MOCVD system, configured for the growth 
of GaAs, is shown schematically in Fig. 9. Liquid 
trimethyl gallium, (CH3 )3 Ga, is contained in a stain­
less-steel bubbler from which its vapor is transported to 
the process tube by hydrogen carrier gas. The tempera­
ture of the bubbler, and therefore the vapor pressure of 
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Figure 9-The MOCVD reactor: (a) schematic diagram; (b) pho­
tograph. 

the metal-organic compound, is closely controlled, so 
that the amount of vapor is accurately known. The sub­
strate, heated indirectly by either RF or infrared radia­
tion, heats the vapor to the 800 to 1000 K range and 
pyrolyzes it with arsine (AsH 3) according to the overall 
reaction, 

heat 
(CH3)3 Ga + AsH3 - GaAs + 3CH4 t. (4) 

Since the reaction is irreversible, fine control of the 
growth rate is readily achieved by adjusting the H2 
flow through the metal-organic bubbler. 

Carrier concentrations in unintentionally doped mate­
rial depend on the purity of the starting reagents and are 
typically below 10 14 cm - 3. Controlled doping is achieved 
by adding small quantities of appropriate dopants to the 
gas stream, for example, diethyl zinc, (CH3CH2)2Zn; p­
type, or hydrogen selenide, H2 Se; n-type, as shown in 
Fig. 9a. 

The MOCVD effort at APL is based on an Emcore 
GS3000 reactor (Fig. 9b), which consists of four metal-
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organic loops, four hydride lines, and hydrogen/nitrogen 
purge lines. The process tube and pump package is 
designed to operate in the 6 to 30 kPa range and is capa­
ble of holding one 50-mm-diameter substrate per run. 
During growth, the susceptor rotates at up to 2000 rpm 
to produce a uniform boundary layer (hence a uniform 
deposit) over the substrate. The valve sequencing and gas 
flow rates are managed by an on-board controller. Full­
safety interlocks are incorporated into the software to shut 
the system down safely in the event of power failure, 
toxic-gas leak, or other potentially hazardous situations. 

The abruptness of interfaces between layers of differ­
ing alloy composition or dopant concentration is critical­
ly dependent on the layout of the gas-handling hardware 
and the design of the process tube. These devices are 
assembled to minimize dead space in the pipework and 
to ensure a rapid change of gas composition over the 
substrate when multilayer structures are to be produced 
in a continuous growth sequence. The APL system is 
designed, as are most others, to operate in a vent/run 
config~ration in which while a particular layer is being 
grown, the gases required for the next layer are being 
established in the vent line. The manifold that switches 
the gases either to the process tube or to the vent line 
is placed as close to the process tube as practicable. Pres­
sures in the vent and growth lines of systems operating 
at reduced pressure must be balanced to prevent unwant­
ed pressure surges at the substrate surface during the 
switching process. 

The system is being evaluated, using the growth of 
undoped GaAs on semi-insulating GaAs substrates as 
the test vehicle. Growth conditions have been established 
to produce very high quality material with carrier con­
centrations of about 10 14 cm -3 and room-temperature 
carrier mobilities of about 7500 cm 2V -I S - I. During the 
evaluation there is opportunity to measure the electrical 
properties of the layers routinely. Hall-effect measure­
ments of carrier mobility and carrier concentration at 
temperatures as low as 1.4 K can be performed using 
a van der Pauw geometry (results down to 77 K from 
an early sample are shown in Fig. 10). The residual car­
rier concentration shown in Fig. 10b is due to sub-ppm 
impurities in the arsine supply and to the slow leaching 
of volatile impurities in the system pipework. The reduc­
tion in carrier concentration as the temperature is de­
creased is due to the partial freeze-out of carriers into 
the shallow parent donor sites. The room-temperature 
carrier mobility is limited by the scattering of the carriers 
by polar longitudinal optical phonons. 17 The mobility 
increases with decreasing temperature because of the 
T312 dependence of the polar scattering coefficient, un­
til it peaks at approximately 77 K as limits imposed by 
scattering of ionized impurities become dominant. 18 

A photoluminescence system-in which carriers are 
excited by light of higher energy than the bandgap, and 
the luminescence is detected as the system relaxes to the 
ground state-is being built, incorporating nitrogen, 
argon-ion, and excimer-Iaser sources, a Jarrell-Ash 
monochromator, and associated detection electronics. 
Photoluminescence measurements make it possible to de-

9 



Bryden et al. - Metal Nitride Semiconductors for Optical Applications 

400 

(a) 

E 
340 

u a 
'7 280 
0 

~ .s; 
220 .~ 

. iii 
Q) 

c:: 
160 

100 
3.5 

(b) 
M 
I 3.2 E 
u 

It> 

0 
2.9 

c:: 

i . iii 
2.6 c: 

Q) 
"0 

Q5 
"E 

2.3 co 
u 

2.0 
2.5 

(c) 

I" 
rn 2.0 I" 
> 

N 

E 1.5 u 
v 
0 

~ 1.0 
:.0 
0 
E 
Q5 0.5 
.~ 

Co 
u 

0 
0 60 120 180 240 300 

Temperature (K) 

Figure 10-Temperature dependence of (a) resistivity, (b) num­
ber of charge carriers, and (c) carrier mobility of a thin film of 
GaAs prepared by the MOCVD method. 

termine such intrinsic properties as impurity levels, mi­
nority-carrier diffusion length, and carrier lifetime. 19 

One of the main goals of continued MOCVD effort 
is to prepare GaN, InN, AlN, and their alloys. A popular 
method in previous work has been to use trimethyl metal­
organics and ammonia (NH3) as starting reagents. 
Deposition temperatures for good-quality single-crystal 
epitaxial growth are in the range 1200 to 1350 K. Lower 
temperatures have resulted in poor surface morphology 
and marked deterioration in optical absorption, both in­
dicative of incomplete pyrolysis products or other 
impurities incorporated into the material. 20 Because 
ammonia has relatively high thermal stability, 
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Figure 11-Schematic of a light-emitting-diode source and a 
solid-state detector fabricated from metal nitrides and their 
alloys. 

NH3 :metal-organic ratios of at least 100: 1 and high 
flow velocities are required to prevent premature pyrol­
ysis of the reactants, particularly for the preparation of 
samples containing aluminum. 

The vapor pressure of nitrogen over GaN is of the 
order of 106 Pa at 1200 K and 105 Pa at 1000 K, im­
plying that growth temperatures lower than those realiz­
able with NH3 could be used to reduce the formation 
of nitrogen vacancies and hence lead to better quality 
material. A promising approach is to use hydrazine 
(N2H4), which has a dissociation energy of 60 kcall 
mole compared with that of NH3 at 105 kcal/mole. 21 

It is known that species containing oxygen profoundly 
affect the growth kinetics and the electrical characteris­
tics of GaN, whether prepared by RFMS or by MOCVD. 
Hydrazine is extremely hygroscopic, and for air at 30070 
relative humidity, it absorbs moisture at rates of at least 
50 ppm per minute of exposure. A quantity of nominal­
ly pure hydrazine has been obtained, and further in situ 
purification will be undertaken using an intermetallic 
(Al,ln,Ga) purifier. The gas-handling system and the 
process chamber of the standard MOCVD reactor have 
been modified to separate the trimethyl gallium and 
hydrazine flows before they enter the process tube, a 
modification that should lead to better control of film 
deposition by preventing the room-temperature forma­
tion of solid addition compounds that interfere with film 
growth. 

DEVICE STRUCTURES 
Optical devices with low quantum efficiency can be 

constructed from material that is not of highest quality. 
Two simple devices of this sort, based on the materials 
prepared by the RFRMS technique, have been fabricat­
ed. The first, illustrated at the top of Fig. 11, is a light­
emitting diode, based on a tunneling barrier deposited 
between a metal and an n-type semiconductor. The de­
vice was constructed by depositing onto an aluminum­
coated substrate a thin (lOO-nm) insulating barrier of 
AlN and then a thick (3-j-tm) layer of n-type AlN. It emit-
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ted light weakly and exhibited bistable resistance22 

(switching), presumably because of pinhole defects in the 
insulating layer. A simple detector, based on either a self­
bias using a Schottky barrier contact or an externally 
generated bias using ohmic contacts,23 is shown at the 
bottom of Fig. 11. Detectors based on the metal nitrides 
have the same advantages as other semiconductor de­
tectors, such as light weight and ruggedness, but with 
the additional benefit of built-in low-energy cutoff. For 
example, an ultraviolet detector based on AlN or GaN 
would not be sensitive to an intense background of visi­
ble light that could cause saturation in devices employ­
ing semiconductors of narrower bandgap. 

Many types of GaAs-based devices, including quan­
tum-well lasers, high-efficiency detectors, and nonlinear 
optical elements, have been fabricated using MOCVD. 
At first, some of these device structures will be prepared 
for use as test objects using GaAs; then analogous 
devices will be fabricated using the wide-bandgap metal 
nitrides. 

CONCLUSION 
A semiconductor system based on AlN, GaN, InN, 

and their alloys has been identified for study. The phys­
ical properties of these materials, notably the bandgap 
and structure, give promise of application in semicon­
ductor optical devices operating from the red through 
the visible and into the ultraviolet regions of the optical 
spectrum. The interactive approach for the study of these 
materials is outlined in Fig. 12. Two deposition tech­
niques, RFRMS and MOCVD, are in use in the pro­
duction of device-grade materials. These techniques oper­
ate at much lower temperatures than those required for 
the more conventional methodologies, thus minimizing 
the dynamic decomposition of the semiconductor as it 
is being formed. The materials produced will be used 
to construct optical sources, nonlinear elements, and de­
tectors, in both conventional and novel (quantum-well) 
structures. It will then be possible to combine the in­
dividual devices into an optical system having an operat­
ing wavelength that can be matched to the spectral re­
gion of interest. 
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