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A COUPLED-MODE MODEL FOR THE PROPAGATION 
OF MILLIMETER ELECTROMAGNETIC WAVES 
IN A TROPOSPHERIC DUCT OVERLYING 
A RANDOMLY ROUGH SEA SURFACE 

A coupled-mode model was developed to address the problem of long-range propagation of acoustic 
waves in an oceanic surface duct. The model presents an exact solution of the wave equation for an 
inhomogeneous, oceanic waveguide bounded by a randomly rough sea surface. It includes full-mode 
coupling and accounts for both the forward propagating wave and the back cattered wave. This article 
demonstrates that the acoustic coupled-mode model can be used to describe rnillimeter-electromagnetic­
wave propagation and scattering in a tropospheric duct overlying a randomly rough sea surface. 

INTRODUCTION 
Rough-surface scattering models can be divided into 

two groups. The first consists of models with a rough 
surface overlying a homogeneous medium that extends 
to infinity. The second can handle the multiple scatter­
ing of a wave propagating along a waveguide. 

In the first group, a point source is located either a 
finite distance from the surface or at infinity, in which 
case the incident waves are planar. Common to all the 
models is a single act of scattering from the rough sur­
face. Once the incident wave interacts with the rough sur­
face, it propagates to infinity, never again interacting 
with the surface. Slight perturbations in the boundary 
can produce only slight distortions in the scattered field. 

In the second group, the medium can be either ho­
mogeneous or refracting. The source is still modeled as 
a point source, but now the wave propagating along the 
waveguide interacts repeatedly with one or both rough 
surfaces. Hence, the field at the receiver is the phased 
sum of the waves scattered multiply by the irregularities 
distributed along the entire waveguide. Even very slight 
boundary perturbations can give rise to considerable dis­
tortions in the scattered field by virtue of the accumu­
lated effects of repeated scatterings. This is the situation 
in naturally occurring waveguides such as the ocean (for 
acoustic waves) and the troposphere (for electromagnetic 
waves). The coupled-mode model falls into the second 
category. 

The term "coupled modes" arises from the follow­
ing considerations. We are seeking a solution of the wave 
equation for a wave that is confined to a waveguide. The 
waveguide is bounded in only one space coordinate (the 
z coordinate) by two surfaces. It is open to infinity in 
the x and y directions. Because the problem is bounded 
in the z direction, the wave functions characterizing that 
direction are a discrete set of complete, orthonormal 
eigenfunctions. Each eigenfunction, called a mode, de­
scribes the characteristic vibrations of the waveguide in 
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the z direction. If the two surfaces bounding the wave­
guide are mooth parallel plane , the energy that starts 
out initially in a mode remain unchanged in that mode 
as the wave propagates along the waveguide. When the 
surfaces are rough, energy can be transferred from mode 
to mode a the wa e propagate . Hence the modes are 
"coupled" to each other. 

Issues in passive and acti e ocean acoustics motivated 
the development of the coupled-mode model I that we 
will discuss. Passi e acou tic ystems detect sound energy 
radiated by a target. Acti e ystems transmit a pulse and 
detect its echo from a target. In active systems there is 
the additional problem of reverberation-unwanted 
sound energy that i cattered back to the receiver from 
the rough boundaries and that masks the target return. 
The coupled-mode model describes the forward propaga­
tion and scattering of the acoustic pulse as well as the 
re erberation. 

Rough- urface scattering effects are enhanced by the 
presence of urface duct in the ocean. In certain areas 
of the world's oceans, an isothermalla er i created and 
maintained beneath the ea surface by wind mixing; the 
layer can be hundreds of meters thick in some areas. The 
sound velocity in the layer increases with depth because 
of pressure. If a source i placed in the layer, a significant 
amount of energy can become trapped there; the exact 
amount depends on frequency, layer thickne ,and the 
sound velocity gradients in and directl beneath the layer. 
The energy propagates along the duct by repeated refrac­
tions and surface reflections. Because the wa e tra el­
ing along the duct interacts many times with the urface, 
it is necessary to have a model that includes rough- ur­
face scattering effects. Also, because variation in duct 
thickness and in the sound velocity gradient can ha e 
a profound effect on the transmission of energy along 
the duct, we must be able to allow for variation of the 
sound speed profile with horizontal range. 
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Two models were developed at APL to take into ac­
count the environmental conditions mentioned above. 
The first solved the problem of a cylindrically symmet­
ric oceanic waveguide with both horizontal and vertical 
variations in the refractive index and a single realization 
of a randomly rough sea surface; the model's geometry is 
shown in Fig. 1a. The main limitation of this model is 
that the assumption of cylindrical symmetry precludes 
any scattering out of the vertical plane. In the second 
(Cartesian) model, the limitation of cylindrical symmetry 
was removed, and a sea running in one direction was 
treated; the geometry of this model is shown in Fig. lb. 
Both models assume a point source, include full-mode 
coupling, and account for the forward and backscattered 
waves. Thus, both yield an exact solution of the wave 
equation for a randomly rough sea surface. Scattering 
out of the vertical plane is allowed in the Cartesian model 
because a point source is used. 

Because these models use a single realization of a ran­
dom surface, statistics for the scattered field can be ob­
tained by means of a Monte Carlo simulation. Statistics 
can be generated by using different realizations of the 
random surface at a fixed time. One can also allow the 
surface to develop in time for a fixed choice of random 
parameters, yielding the Doppler spectrum for the 
surface. 

The theory for both models is presented in detail in 
Ref. 2; the numerical algorithm that was used to inte­
grate the coupled differential equations is discussed in 
Ref. 3. A computer code exists only for the cylindrical 
model; it does not contain a variation of the refractive 
index with horizontal range. Our next task is to include 
horizontal range variations in the computer code, since 
they are already accounted for in the theory. We will 
discuss only the cylindrical model here. 

The coupled-mode model has been successfully ap­
plied to acoustic propagation in an oceanic waveguide; 
we have begun to investigate the possibility of applying 
it to describe millimeter-electromagnetic-wave propaga­
tion in a tropospheric duct bounded by a rough sea sur­
face. At these frequencies we must include scattering from 
capillary waves. Because of the boundary conditions al­
ready built into the acoustic model, only one type of elec­
tromagnetic propagation can be addressed: the case of 
a horizontally polarized electric wave scattering off a sea 
of infinite conductivity. This article is not intended to 
give a definitive answer to millimeter-electromagnetic­
wave scattering from a rough surface, since we have just 
begun to address the problem. Instead, it demonstrates 
that the acoustic coupled-mode model can be used to de­
scribe millimeter-electromagnetic-wave propagation and 
scattering from a rough sea surface. 

COUPLED-MODE THEORY 
The separation of variables is a powerful technique 

for solving partial differential equations. However, there 
are only 11 three-dimensional coordinate systems in which 
the wave equation is separable. 4 The technique of sepa­
ration of variables can be used only if in one system each 
boundary of the medium coincides with a coordinate sur-
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Figure 1-Examples of realization of the sea surface in two 
geometries. 

face and, further, if the refractive index is additively 
separable in the coordinates. 

One method of solving nonseparable problems is the 
technique of coupled modes in which the partial differen­
tial wave equation is replaced by a system of coupled, 
ordinary differential equations. The coupled differen­
tial equations give an exact and rigorous description of 
wave propagation for nonseparable problems. The meth­
od has existed at least since 1927 when Born and Oppen­
heimer5 applied it to the Schrodinger wave equation. 

The description of mode coupling is not unique. There 
are different ways of obtaining a system of coupled dif­
ferential equations. 6 We will consider only one meth­
od in this article, the method of local normal modes. 
What follows is a brief summary of the theory; a de­
tailed treatment can be found in Ref. 2. 

We consider the problem of a point source located at 
r = 0 and z = Zs in a cylindrically symmetric oceanic 
waveguide. The coordinate system in relation to the 
waveguide is shown in Fig. 2. The bottom of the wave­
guide is bounded by the sea surface, which is given as 
a function of range r and time t as 
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Figure 2-Coordinate geometry for the cylindrical waveguide. 

z = s(r,t) . (1) 

The top of the waveguide is bounded by a flat, rigid 
surface. As stated above, for this first derivation of an 
electromagnetic propagation model, the boundary con­
ditions were not changed from those of the acoustic 
model. Future development of this theory will lead to 
more realistic boundary conditions at the top of the at­
mosphere, such as an infinite halfspace above the sea 
surface, so that the electromagnetic radiation can escape 
to outer space. However, that condition can be approx­
imated with the model we have if we put a highly ab­
sorbing layer just beneath the rigid boundary. Then any 
radiation that reaches that height is removed from the 
waveguide as if it had escaped to outer space. 

The wave velocity v (r,z) in the waveguide can be a 
function of both range r and height z. The wave equa­
tion that governs the electric field away from the source is 

o. (2) 

In Eq. 2, 8 (r,z,t) is the ¢-component of the electric 
field vector, and n(r,Z) is the refractive index of the 
medium, defined by 

n ( r, z) = c / v ( r, z) , (3) 

where c is the speed of light in vacuum. 
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Let us assume that we are dealing with an electric wave 
of a single angular frequency w. Then we can write 

8 (r,z,t) = E(r,z)e- iw
( , (4) 

where E(r,z) is the portion of the electric field that is 
independent of time. U ing Eq. 4, we can write Eq. 2 
in cylindrical coordinate as 

0, (5) 

where 

k(r,z) = wn (r,z) . (6) 

Deri atives with respect to ¢ do not appear in Eq. 5, 
because of the assumption of cylindrical symmetry. 

Equation 5 is called the Helmholtz equation or the 
space part of the wa e equation. It is exact when the 
boundaries of the medium in which the wave is propa­
gating are independent of time. But we want to consider 
a time- arying sea surface, which would normally mean 
that instead of 01 ing the Helmholtz equation (an el­
liptic partial differential equation) we would have to solve 
the full-wave equation, Eq. 2 which is a hyperbolic par­
tial differential equation. The numerical solution of the 
full hyperbolic problem with a rough, time-varying boun­
dary is impractical, howe er. Fortunately, since the fre­
quencies of the mo ing ocean surface that control the 
scattering proces are much lower than the electromag­
netic frequency in all case of interest to us, we can in­
voke the narrowband approximation to the wave equa­
tion, expressed mathematically by 

(7) 

This approximation is di cussed in detail in the papers 
by Fortuin and Labianca and Harper. It i equi alent 
to solving the Helmholtz equation for a time-dependent 
boundary. Instead of Eq. 4, howe er, we now ha e 

8 (r,z,t) E ( r, Z, t) e - iw( , (8) 

where E(r,z,t) becomes a lowly arying function of 
time through the application of the boundary conditions. 

Fourier-transforming the solutions 8(r,z,ti ) obtained 
at a set of discrete times t i yields the Doppler frequen­
cy spectrum at the point (r,Z). 

We postulate a solution of the form 

E = E <Pn (r) 'It n (r,Z) (9) 
n=l 
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Note that in contrast to the usual normal-mode solu­
tion, which uses separation of variables, the eigenfunc­
tions 'Ir n depend on the range as well as the height. 
Consequently, they are called "local" normal modes. 
For the range-independent problem, the modes 'Ir n are 
independent of range and hence form a "global" solu­
tion; that is, a given mode is supported unchanged along 
the entire length of the waveguide. 

We also postulate that the local eigenfunctions 'Ir n 

satisfy the partial differential equation 

and the following boundary conditions: on the sea 
surface, 

E[r,s(r,t),t] = 0 , (lOb) 

and on the rigid upper boundary, 

[ 
aE(r,z,t) ] = 0 , 

az z=d 
(lOc) 

where d is the thickness of the waveguide. The validity 
of the postulates given by Eqs. 9 and 10 must be con­
firmed by experimental measurement. 

The variable Kn (r) is the "local" eigenvalue of the 
problem. It is determined at each point of the waveguide 
by the wave velocity proftle and the boundary conditions. 
In the usual range-independent normal-mode solutions, 
the eigenvalues are constants, independent of the hori­
zontal range. 

The only difference in mathematical structure between 
Eq. 10 for the local modes and the corresponding equa­
tion for the range-independent case is that the former is 
a partial differential equation and the latter is an ordi­
nary differential equation. A partial differential equation 
is necessary here because we are postulating that the local 
modes can now be a function of range as well as height. 

It can be shown that the eigenfunction solutions 'Ir n 

of Eq. 10, subject to the boundary conditions, form a 
complete orthonormal system at each range point r. The 
orthonormality condition is 

(11) 

Thus, the modal structure of a range-dependent wave­
guide varies from point to point along the waveguide. 
At each point the modal structure depends on the fre­
quency, the boundary conditions, the wave velocity pro­
file, and the thickness of the waveguide, and the modal 
structure can vary along the waveguide because of vari­
ations in the latter two quantities. Equation 11 implies 
that the local modes must be renormalized at each point. 
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That the modes are different at each point along the 
waveguide implies the existence of a mode-coupling pro­
cess that is best expressed in terms of waves propagating 
in the forward and backward radial direction rather than 
in terms of the total field <Pm (r). Consequently, we let 

(12) 

where am+ (r) is the forward-propagating wave and 
am- (r) is the backward-propagating, or backscattered, 
wave. The application of the boundary conditions de­
termines whether a function represents the forward or 
the backscattered wave. The boundary conditions will 
be discussed later in this section. 

The coupled equations that determine the radial 
propagating waves are 

dam+ 
(iKm -;J a+ 

dr 
m 

= E B+ + a+ + E B+- an 
-

m n n m n 
n=! n=! 

(13) 

dam-
+ (iKm + ~) am---

dr 2r 

E B- + m n a+ n + E B--mn an-

n=! n=! 

Here the coupling coefficients are given by 

B+ + 
-1 

[<Kn + dKnJ 
m n 

2Km 
Km )Bmn + omn dr , 

B +- = [ <Kn - Km )Bmn + omn dKnJ 
m n 

2Km dr 
, 

B-+ = Bm+ n- , m n 

B-- B':/ , 
(14) 

mn 

Bmn Smn + N mn (m :;r= n) , 

Bnn = o , 

where for m :;r= n, 
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and 

1 (airm air n dS) 
(K/~ - Kn

2
) az az dr z=s 

jd an 
n - irm ir n dz 

s ar 

(15) 

First consider the coupling coefficients Smn , which 
control the exchange of energy resulting from the rough 
sea surface. We see that they are inversely proportional 
to the difference of the squares of the modal wave num­
bers Kn, so that coupling is strongest for two neighbor­
ing modes. Since the squares of the modal wave number 
appear, Smn feeds the same power into both forward­
and backward-traveling waves at a given range point. 
Whether this power builds up in either the forward or 
the backscattered waves depends on the phase relation­
ship of the incremental amounts of power fed to the 
wave at other points. A wave builds up only if the in­
cremental contributions at all points along the waveguide 
add up in phase. We note that Smn is proportional to 
the slope (air n/az) of the wave function at the sea sur­
face, a very reasonable result. One way to look at this is 
to consider the ray equivalent 9 for a mode. As the or­
der of the mode increases, the slope of the wave func­
tion at the surface and therefore the strength of the 
coupling increase. But as the order of the mode increases, 
the ray equivalent strikes the surface at larger and larg­
er grazing angles, and we would expect more pronounced 
scattering. Finally, we see that Smn is proportional to 
the slope of the sea surface. 

The second term N mn in the expression for the coup­
ling coefficient Bmn is associated with mode coupling 
arising from horizontal gradients (an / ar) in the index of 
refraction n (r,z). 

We confine the range-dependent properties of the 
waveguide to an interval Ro < r < R I ; that is, the sur­
face is assumed to be flat, and the wave velocity depends 
only on height outside this region. The only requirement 
we put on Ro is that Km Ro ~ I. This is not a limita­
tion of the theory, but it does simplify the numerical 
code. The value for R I can be hundreds of nautical 
miles. The boundary conditions on the variables a/ 
and an- are specified by their values at Ro and R I , 

respectively. To satisfy the radiation condition at infInity, 
we assume that 

(16) 

Because the waveguide has no range-dependent proper­
ties from R I to infinity, an outgoing wave at infinity 
is guaranteed. The initial section of the waveguide (0 < 
r < Ro) is range-independent; therefore, a normal 
mode expansion of a point source is used to calculate 
a/ (Ro). 

A very common approximation applied to the cou­
pled set of differential equations to make them numeri­
cally tractable is the adiabatic approximation in which 
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all coupling coefficient are neglected, thus uncoupling 
Eq. 13. Howe er, the equations are still weakly range­
dependent through the eigen alues Kn (r). With this 
technique a weakly range-dependent environment can be 
treated quite imply. In thi article the adiabatic approx­
imation i not u ed, and full-mode coupling is always 
taken into account. 

A MODEL FOR A TIME-VARYING, 
RANDOMLY ROUGH SEA SURFACE 

It hould be borne in mind that the propagation model 
is independent of any urface model and that any other 
model imulating a random sea surface could be used 
in tead of the one de cribed in this section. The model 
we will use wa adapted by Harper and Labianca 10 

from a more general model proposed by Pierson. II The 
random urface i imulated by 

z = s(r,t) 
.\4 

I: hj co (rj r - n/ t + "'0 ) 
j =1 

(17) 

where n/ i the angular frequency (n/ > 0), taken to 
be a statistically independent, random variable, and r j 
is the wa e number. The di per ion relationship is 

n.'2 
J p 

(18) 

Here g i the acceleration due to gra ity, p is the density 
of seawater, and Tithe urface tension. The phases "Yj 
are also taken to be stati tically independent, random 
variables uniformly distributed between 0 and 27r. The 
amplitudes hj are cho en in a deterministic manner de­
scribed below. The proces , Eq. 17, is ergodic with re­
spect to its mean and autocorrelation function under a 
restriction on n/ , which we hall describe. 

Under the as umption that the power spectrum p(n') 
is band-limited, nmin 5 n' 5 nmax , we defIne the equal 
inter als 

(1 1M) (nmax - nmin ) (19) 

and the discrete set of frequencies 

u I, ... ,M) . (20) 

The set of random frequencies n/ i tati tically in­
dependent of "Yj and is defined by 

n.' 
J u I, ... ,M) , (21) 

where the onj are random variables uniformly distribut­
ed between - E/ 2 and El2 with E ~ .1n. This defInition 
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ensures the ergodicity, in an approximate sense, of the 
simulated process z = s(r,t) with respect to its correla­
tion function. 

The amplitudes hj are determined according to the 
prescription 

2P(n/) , (22) 

where p(n/) is the power spectrum for the surface 
wave height. 

Note that had we chosen the nj ' to be deterministic, 
say nj ' = nj , the process s(r,t) would be ergodic ex­
actly with respect to its autocorrelation function. The 
main reason for requiring 0,/ to have a small random 
part onj is to preclude the periodicity of s(r,t) in time. 

We will discuss only two wave-height spectra in this 
article: the Pierson-Moskowitz spectrum 12 and the Liu 
and Lin spectrum. 13 

The Pierson-Moskowitz spectrum holds in the angu­
lar frequency range 0 < 0, ' < 8.6051u and is given by 

where 

p(n' ) 

a = 0.0081, 
(3 = 0.74, 
no g/u, 
u = wind speed (m/ s). 

(23) 

Toward the high-frequency end of the wind-wave 
spectrum, waves that are controlled partly or entirely by 
surface tension may be categorized as gravity-capillary or 
capillary waves, respectively. Although the demarcation 
between them is arbitrary, gravity-capillary waves are 
usually defined as those with wavelengths between 7 and 
0.6 cm or a frequency between 5.0 and 48.5 Hz; capil­
lary waves are those with wavelengths less than 0.6 cm. 
In this article we are interested in the capillary regime 
between 50 and 80 Hz. Consequently, we chose the Liu 
and Lin spectrum for capillary waves because their mea­
surements were made with a laser displacement gauge, 
a nonintrusive sensor. The Liu and Lin spectrum is giv­
en by 

p(n') (24) 

where 

(3 = 2.73 X 10- 4 (uolcm )9/ 4, 

'Y 71 p, 
Uo = friction velocity, 
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Cm = minimum phase speed of 
the capillary wave, 

7 surface tension, 
p density of water. 

PROPAGATION IN A TROPOSPHERIC 
DUCT AT 3 GHz 

For a discussion of the basic physical concepts govern­
ing microwave propagation in a tropospheric duct, we 
refer the reader to an excellent article by Ko, Sari, and 
Skura. 14 In addition to discussing the basic features of 
microwave propagation in a duct, they also present a 
new propagation model, EMPE (Electromagnetic Para­
bolic Equation), based on the parabolic equation approx­
imation to the full-wave equation. Essentially, the 
approximation replaces the Helmholtz equation-an el­
liptic partial differential equation-with a parabolic par­
tial differential equation by neglecting a second derivative 
with respect to range. The method has the effect of sim­
plifying the boundary conditions imposed on the range. 
A unique, stable solution exists for an elliptic partial 
differential equation when the field or its derivative is 
specified on a closed boundary. A boundary is closed 
if it completely surrounds the solution (even if part of 
the boundary is at infinity). A boundary is open if the 
boundary goes to infinity and no boundary conditions 
are imposed along the part at infinity. When the field 
or its derivative is specified on an open boundary for 
a parabolic equation, a unique stable solution exists in 
the positive direction (here, increasing range). This sim­
plification in the boundary conditions permits easy nu­
merical handling of problems in which the refractive 
index varies with horizontal range. 

Physically, the parabolic approximation has two ef­
fects. First, it neglects backscattering. 15 Second, Mc­
Daniel 16 has shown that discrete modes are propagated 
with the correct amplitude and mode shapes but with 
errors in the phase velocities. The phase vclocity for the 
nth mode v n is wi Kn. Only one mode is propagated 
without error; the error increases with increasing mode 
number. This error in the phase velocities, or the eigen­
values, can cause substantial shifts in the modal inter­
ference pattern. We will shortly see an example of this. 

Even with those limitations, however, the parabolic 
equation model has become an extremely useful tool in 
electromagnetic and acoustic propagation and is used ex­
tensively in both. 

We chose 3 GHz so that we could compare our results 
with EMPE. We needed a test case for comparison be­
cause of the major modifications made in the acoustic 
computer code. The modifications resulted not only 
from the changes brought about when converting from 
acoustic wave propagation to electromagnetic wave prop­
agation, but also from converting the code that origi­
nally ran on a VAX 111780 computer to a Cray 
X-MP/24 computer. 

The radio refractivity N is defined by 

N = (n - 1) X 106 (25) 
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and may be determined empirically at any altitude from 
knowledge of the atmospheric pressure, the temperature, 
and the partial pressure of water vapor. 

The vertical refractivity profile used for the 3-GHz 
case is listed below. Figure 3 is a plot of the refractivity. 

Height (m) 

o 
61 

365.8 

Refractivity 

299.997 
260.014 
247.966 

We want to compare the transmission loss calculated 
by the coupled-mode model with that calculated by 
EMPE; because EMPE does not handle a rough sea sur­
face, the comparison was done for a flat sea surface. 
Transmission loss, TL, is a measure of the loss in inten­
sity of the electromagnetic wave between a point 1 m 
from the source and a receiver at some arbitrary distance 
from the source. If 10 is the intensity at 1 m from the 
source and I is the intensity at the receiver, the trans­
mission loss between the reference distance of 1 m and 
the distant receiver is 

TL = 10 10g(10/I) dB . (26) 

We see from the vertical refractivity profile that there 
is a 61-m-high surface duct. At 3 GHz, seven modes are 
trapped in this duct. They alone would give an adequate 
description of the transmission loss for a source and re­
ceiver located in the duct, provided there was no mech­
anism, such as a rough surface, to scatter energy out 
of the duct. There are 29 modes trapped in the 365.8-m 
waveguide, and we included all of them in our calcula­
tions. A trapped mode is a mode having a phase velocity 
that is realized in the waveguide. We can calculate the 

~.-------.--------.--------~------~ 

300 

E 
-§, 200 
. iii 
I 

100 

o~------~------~--______ ~~~ __ ~ 
230 250 270 290 310 

Refractivity, N 

Figure 3-Refractivity versus height for the 3-GHz case. 
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wave velocity in the wa eguide by using Eqs. 25 and 3 
and the values of the refractivity found in the text table 
abo e. The wa e elocity at 0 m is 2.9970259 x 108 

mi s, and the wave elocity at 365.8 m is 2.9971818 x 
10 m/ s. All modes with a phase velocity between these 
two values (which represent the maximum and minimum 
values of the elocity in the waveguide) are said to be 
trapped. 

Although the model can accommodate absorption, we 
have neglected it in all runs. We put the source and re­
ceiver in the duct at a height of 15.2 m. The source is 
an omnidirectional point radiator. 

Figure 4 is a comparison of the transmission loss cal­
culated by the coupled mode model with that calculat­
ed by EMPE. The comparison is good. We discussed 
above why the modal interference pattern of EMPE does 
not agree exactly with the coupled-mode model. Shifts 
in the interference pattern of EMPE are not a serious 
limitation. No deterministic model can predict exactly 
the transmission loss between two fixed points, whether 
or not the model calculates the eigenvalues correctly. 
Shifts in the interference pattern do not affect the general 
propagation characteristics that are produced by a refrac­
tivity profile. If one is looking for anomalies in the prop­
agation, such as shadow zones or ducting, they will be 
there. For most applications it does not matter if the 
model predicts them to be at a lightly different range 
than where they were measured. In addition, EMPE has 
been well validated b comparison with experimental 
data. 

PROPAGATION IN A 
TROPOSPHERIC DUCT AT 35 GHz 

The long-term objecti e of this project is to investigate 
the effect of capillary wa es on the scattering of mil-

CIl 
~ 

- 60.------.-------.------.-----__ ~----~ 

- 70 

Source and receiver height: 15.2 m 
Transmission loss referenced to 1 m from source 
No absorption 

Coupled-mode model 

EMPE 
V) -80 
V) 

o 
.....J 

-90 

-1oo~----~------~------~~----L-----~ o 74 148 222 296 370 
Range (km) 

Figure 4-Transm iss ion loss versus range for the 3-GHz case 
computed by EMPE and coupled-mode models for a flat sea 
surface. 
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limeter electromagnetic waves propagating over long 
ranges in a tropospheric duct. The fIrst goal was to ascer­
tain whether the acoustic coupled-mode model could 
even handle the problem. At this point in the investiga­
tion, we have just finished answering that question in 
the affirmative. The examples shown in this section are 
only meant to demonstrate that millimeter-electromag­
netic-wave propagation in a tropospheric duct overly­
ing a rough sea surface can be addressed by the 
coupled-mode model. We also want to emphasize that 
the results in this section for rough-surface scattering 
from capillary waves should not necessarily be taken as 
correct, because of the current representation of the 
capillary-wave profile, which is independent of the 
coupled-mode model. We will have more to say about 
the problem later. 

Now let us discuss propagation at 35 GHz in a tro­
pospheric duct. Table 1 shows the vertical refractivity 
profile that we used for this case. Figure 5 is a plot of 
refractivity versus altitude. Figure 6, an enlargement of 
the first 70 m of the profile, shows that a strong surface 
duct is present in the first 14 m of altitude. 

First, let us calculate transmission loss for a 500-m­
high waveguide with a flat sea surface. Since the coupled­
mode model uses exactly the same algorithm whether the 
surface is flat or rough, we can conclude that if it works 
for a flat surface it will work for a rough surface. There 
are 493 modes trapped in this waveguide. We put the 
source at 9.5 m and again we neglect absorption. 

Figures 7, 8, and 9 show vertical transmission-loss pro­
files from 0 to 500 m at ranges of 92.7, 185.3, and 278 
km, respectively. One can see how the energy slowly 
spreads out of the duct over these ranges. At 92.7 km, 

Table 1-Vertical refractivity profile used in 
the 35-GHz case. 

Height (m ) Refractivity, N 

0 350.00 
1 328.67 
2 327.33 
3 326.67 
4 326.00 
5 325.66 
6 325.33 
7 325.00 
8 324.66 
9 324.48 
10 324.33 
12 323.86 
14 323.66 
16 323.33 
32 321.33 
50 320.00 
70 318.66 
100 316.99 
200 312.65 
500 300.97 
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the coverage is fairly good up to about 430 m, but there 
are almost periodic holes in that coverage. When we get 
to 278 km, there is no coverage above approximately 
200 m. Figure 10 shows transmission loss versus range 
for a receiver also at 9.5 m. 

Now let us consider a rough surface. The wavelength 
of the electromagnetic waves at 35 GHz is 8.6 mm. The 
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Figure 5-Refractivity versus height for the 35-GHz case. 
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Figure 6-Refractivity profile for the first 70 m of the tropo­
sphere for the 35-GHz case. 
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Figure 7-Transm iss ion loss versus height for the 35-GHz 
case at a range of 92.7 km for a flat sea surface. 

water wavelength that gives rise to Bragg scattering is 
approximately 4.3 mm; that corresponds to a frequen­
cy of 80 Hz and is in the capillary regime. Consequently, 
for a test case we decided to include waves in the fre­
quency range 50 to 80 Hz. We started at 50 Hz because 
that is approximately the lower limit for capillary waves. 
In any study of scattering from capillary waves, we 
would want to include water-wave frequencies at the 
Pierson-Moskowitz end of the spectrum, so that the cap­
illary waves would be riding on the longer gravity waves. 

Even though we believe that we have a suitable spec­
trum for capillary waves in the Liu-Lin spectrum, there 
is no reason to believe that Eq. 17 may not be a good 
representation of the capillary-wave profile. In the 
Pierson-Moskowitz regime, Eq. 17 is a good represen­
tation of the sea surface, especially at low grazing an­
gles. Figure 11 shows a section of a capillary-wave proflle 
calculated from Eq. 17 using the Liu-Lin spectrum for 
a wind speed of 28 kt. The calculated profile does not 
have many of the features of a theoretical profile, cal­
culated by Crapper, 17 that represents an exact nonlinear 
solution. Any future work would have to resolve that 
problem. 

Figure 12 is a comparison of the transmission loss for 
a flat sea surface with that for the randomly rough cap­
illary-wave surface described above. The integration step 
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Figure 8-Transmission loss versu s height for the 35-GHz 
case at a range of 185.3 km for a flat sea surface . 

size was one-sixteenth that of the smallest water wave­
length. No conclu ion hould be drawn from a com­
parison of these two cur e , for reasons to be discussed 
in the next section. 

CONCLUSIO S AND FUTURE DIRECTIONS 
We have demonstrated that an exi ting acou tic, cou­

pled-mode model can be u ed to describe millimeter -elec­
tromagnetic-wave propagation and cattering in a tropo­
spheric duct 0 erlying a randomly rough ea urface. 

Future work will be directed at the following areas: 

1. Surface realization model for capillary wa e . 
2. Boundary condition at the top of the atmo phere. 
3. Inclusion of a range-dependent environment. 
4. Boundary conditions at the ea urface. 

We have already discussed the problem of the ur­
face representation for capillary waves and the bound­
ary condition at the top of the atmosphere. For the cases 
discussed here, a rigid upper boundary was u ed with 
no absorbing layer beneath it. We included only mode 
that were trapped in the wa eguide so that none reflect­
ed off the rigid urface. Consequently, if the rough ur­
face used in our example cattered energy into high 
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Figure 9-Transmission loss,/versus height for the 35-GHz 
case at a range of 278 km .tor a flat sea surface. 
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Figure 10-Transmission loss versus range for the 35-GHz 
case for a flat sea surface. 

angles, we may not have had enough of the higher-order 
modes to correctly account for that scattering. This is 
another reason that the transmission loss shown in Fig. 
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Figure 11-Section of a capillary-wave profile. 
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Figure 12-Transmission loss versus range for the 35-GHz 
case; integration step size is 0.25 mm. 

12 may not be exact. Again, the example was only in­
tended as a demonstration that the coupled-mode model 
would run for the electromagnetic case. 

As shown by Eq. 15, the coupled-mode theory allows 
for a waveguide in which the refractive index varies hor­
izontally as well as vertically. The range-dependent 
refractive index has not been coded into the computer 
program, however. Where surface duct thickness varies 
along the track, it is imperative to account for this 
variation. 

The present model treats only the case of a horizon­
tally polarized electric wave and an infinitely conduct­
ing sea. Future work should extend the theory to treat 
vertical polarization and a sea with finite conductivity. 
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