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A NUMERICAL SIMULATION OF VORTEX MOTION 
IN A STRATIFIED ENVIRONMENT 
AND COMPARISON WITH EXPERIMENTS 

A most distinctive feature characterizing the oceanic environment is ambient density stratification 
resulting from temperature and salinity. Fluid motions in that stratified background are markedly 
different from their counterparts in unstratified flow. A classic problem in fluid mechanics is the 
motion of a pair of counterrotating vortices, such as those shed from a wing tip. Stratification adds 
enough complications to the problem so that in the early 1970s a controversy arose about the vortex 
behavior in those circumstances. With the advent of digital computers, the ability to solve numerical­
ly the governing equations of fluid motion allowed the investigation of previously intractable non­
linear problems such as vortex motion. To demonstrate aspects of stratified fluid dynamic behavior, 
a computational study has been made of some simple phenomena associated with vortex motion. 

INTRODUCTION 

The inclusion in an incompressible fluid, of a den­
sity variation resulting from perturbations about a sta­
bly stratified background density profile, leads to a 
wide variety of phenomena that have no parallel in un­
stratified flows. The additional degree of freedom 
provided by the ability to excite potential energy (be­
cause of the displacement of fluid particles from their 
neutrally buoyant positions) provides the source for 
such diverse phenomena as internal wave coupling with 
turbulent motion and wake collapse behind slender 
bodies. The extension of Kelvin's theorem to allow for 
the production of new vorticity arising from stratifi­
cation effects influences the dynamic phenomena of 
the interaction of wing-trailing vortex pairs. 

The subject of wake collapse has been surveyed from 
the experimental point of view by Lin and Pao,l and 
examples of predictive capabilities are shown in Has­
sid. 2 The coupling of the random nondeterministic 
part of the wake flow field was covered experimental­
ly in a recent paper by Gilreath and Brandt 3 and 
from a numerical standpoint by Hirsh and Stuh­
miller 4 and by Metcalfe and Riley.5 The present 
study will concentrate only on the wake flow produced 
by the trailing vortex system of a wing, the so-called 
"vortex wake." The main emphasis will be on the nu­
merical prediction of various phenomena of vortex 
wakes, including only as much physics in the equations 
to be solved as is necessary to predict the desired 
phenomena; e.g., the turbulent aspects of the flow will 
be neglected but commented on when necessary. The 
predictions will be compared with extant experiments 
and with new tests performed at APL. 

Two vastly different phenomena associated with the 
flow past a wing in a stratified medium are examined 
numerically and compared with experimental results. 
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The parameter that characterizes each problem is a 
vortex Froude number, F v, the ratio of vortex iner­
tia to buoyancy. For low Froude numbers, calculations 
demonstrate that a linear inviscid description of the 
flow is possible; for F v :=:: 1, the full nonlinear equa­
tions are necessary, but the inviscid approximation still 
predicts the gross features of the flow. When F v is 
larger than 1.5, it is obvious that turbulence will have 
to be accounted for. The computed solutions are pro­
duced by a specially constructed numerical procedure 
that conserves energy even in the F v :=:: 1 regime 
when there is nonlinear transfer between kinetic and 
potential energy. 

EQUATIONS OF THE PROBLEM 
For the two sets of tests to be predicted in this work, 

the focus of attention was on the nondissipative 
phenomena (i.e., the generation of internal waves or 
the suppression of vortex motion) that occurred be­
cause of the inclusion of stratification. Thus, in select­
ing what terms had to be used to describe the flow, 
only the nonlinear terms and additional stratification 
terms in the usual equations of motion were consid­
ered. No molecular viscosity or turbulence model was 
used; the equations are inviscid. The consequences of 
this decision will be noted whenever necessary. It will 
also be assumed that the generated vortices were shed 
by a wing moving rapidly in the x direction. It can be 
shown that if the wing Froude number, F w, is large, 
the motion can be considered as an unsteady two­
dimensional phenomenon in the y-z plane. 

Under those conditions, the equations of inviscid, 
incompressible, stratified flow are the Euler equations 
modified by the Boussinesq approximation, the incom­
pressibility condition, and the evolution equation for 
the density. In two dimensions, with z vertical and y 
horizontal, these appear as 
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where v and ware the horizontal and vertical veloci­
ties, p is the fluid pressure, and g is the acceleration 
of gravity. The fluid density is 

P Po + p (z) + p ' (y, Z,t) , 

where Po is a constant, p represents the static back­
ground stratification, and p I is the perturbation from 
the rest case caused by the motion. Usually, in the 
ocean, Po ~ P ~ p ' . 

For computational purposes, it is sometimes easier 
to eliminate the pressure from Eqs. 1 and form the vor­
ticity of the fluid (s = curl v). This gives, in place of 1, 

as as as 
+ v - + w-at ay az 

g ap ' 
Po ay (4) 

Equation 4 shows the extension to Kelvin's theorem 
whereby a density perturbation in a stratified fluid acts 
as a source of vorticity that would not otherwise be 
present. 

In order to gain insight into the nature of the possi­
ble solutions to these equations, it is convenient to cast 
them into nondimensional form, scaling each variable 
by a quantity characteristic of its expected magnitude. 
In our particular instance, there are two distinct time 
scales over which a significant aspect of the fluid mo­
tion can take place. There is the dynamic time scale, 
which is the time a characteristic length would be 
traversed by a fluid particle traveling at the charac­
teristic velocity, and there is the buoyant time scale 
based on the natural buoyancy frequency of the strati­
fied flow, the Brunt-V aisala frequency, N, defined by 

2 g dp 
N (z) = - --

Po dz 
(5) 

Each of the scalings gives a slightly different form of 
the nondimensional governing equations. 
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For the dynamic scaling, Eqs. 3 and 4 become, 
respectively, 

as as as ap ' 
+ v- + w- -

at ay az Fv2 ay (6a) 
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- + v- + w- n2w, at ay az 

(7a) 

where all quantities are now dimensionless and n2 is 
the dimensionless Brunt-Vaisala frequency. If the 
buoyant scaling is used, the equations become 

as + Fv(VaS + was) = ap ' 
at ay az ay 

ap I ( ap I ap I ) 

+ Fv v - + w-at ay az 

F v is defined as 

(6b) 

(8) 

where uc, N c, and L c are the characteristic scales for 
velocity, the Brunt -V aisala frequency, and length used 
to make Eqs. 6 and 7 dimensionless . 

Equations 6a and 7a are valid when Fv ~ 1, i.e., 
when the buoyancy has very little influence on the non­
linear dynamics of the motion. Conversely, Eqs. 6b 
and 7b are valid when F v <{ 1· and buoyancy domi­
nates the flow. When Fv approaches zero , the equa­
tions that result from 6b and 7b describe the 
propagation of linear internal waves. 

From this discussion on scaling, three distinct re­
gimes are obvious. One is the large Froude number 
regime where the density perturbation acts, to lowest 
order, as a passive scalar advected by the velocity field. 
This regime is effectively that of classic flows and is 
the subject of the now-standard field of computational 
fluid dynamics. It will not be dealt with further. The 
other regimes (low Froude numbers and F =::: 1) will 
be covered by the experiments cited and the numeri­
cal methods and predictions given. The F = 0 limit 
is the realm of much linearized analysis for wave mo­
tion, but the full nonlinear equations will be used to 
determine if the scaling produces linear results . The 
F =::: 1 regime is of interest because it is there that all 
the terms in the equation are necessary and the non­
linear advective terms and buoyancy terms are of equal 
order. 
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METHOD OF SOLUTION 
The nonlinear, coupled, partial differential equa­

tions 6 and 7 were solved numerically on the VAX 
11 / 780 computer to determine whether some experi­
mental results could be predicted as inviscid phenome­
na. The absence of actual dissipation within the 
governing differential equations was used as a guide 
in selecting the finite difference procedure to integrate 
the equations. Methods were sought that would elim­
inate or minimize any artificial dissipation introduced 
by the numerics. A seldom-used time integration pro­
cedure was coupled to a modified standard spatial dis­
cretization in a computer code called FISHBONE (for 
FInite-difference or Spectral Hydrocode for BOus­
sinesq Nonlinear Equations) to produce the numeri­
cal results. Details of the numerical method can be 
found in Ref. 6. 

One measure of the accuracy of FISHBONE results 
can be gauged from its energy conservation proper­
ties. For a constant Nfluid, Eqs. 6 and 7 can be shown 
to imply that the total (nondimensional) energy con­
tained in the fluid, 

E = ~ (v , + w' + Fv' p") , 

is constant. Results obtained from FISHBONE calcu­
lations showed that the computed sum of the kinetic 
and potential energies was indeed constant. 

The equations to be solved require both initial and 
boundary conditions. Because the simulations were to 
be of experiments run in towing tanks, the boundary 
conditions imposed for the normal velocities were sim­
ply no flow through the boundaries of the finite dif­
ference grid over which the numerical integration took 
place, and free-slip boundary conditions for the tan­
gential velocities. For the initial conditions, since the 
counterrotating vortices were produced by the passage 
of a towed wing and since the equation for the vortic­
ity (Eq. 6) was to be solved, a simple aerodynamic for­
mula of Thwaites 7 was used to predict the strength of 
the shed vortices based on the wing speed and angle 
of attack. The distance between these tip vortices, 
denoted by b, was taken to be (71"/ 4) times the wing 
span, as was also given by classic aerodynamic the­
ory. The only parameter that was at all adjustable con­
cerned the assumed distribution of the vorticity 
because point vortices cannot be computed by the 
methods used in FISHBONE. The vorticity was as­
sumed to be distributed in a region surrounding the 
71" / 4 point according to 

~ = 

and '0 was adjusted so that the discrete values of the 
vorticity at the finite-difference grid points could be 
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integrated to give the total wing circulation, r, within 
1 percent of the Thwaites value. 

Since the vortex motion and the internal waves 
resulting from that motion were the focus of this nu­
merical investigation, no trailing turbulent wake was 
included to account for the passage of the vortex­
generating wing, nor was any density perturbation as­
sumed on the initial plane. Thus, once the speed and 
span of the wing were given, the computations could 
proceed. 

EXPERIMENTAL CONFIGURATION 
Two series of experiments were performed in the 

APL Hydrodynamics Laboratory towing tank. An ex­
tensive description of the experimental facility may be 
found in an article by Brandt and Hurdis. 8 

The experiments were performed by first stratify­
ing the water in the tank to a preset Brunt-Vaisala pro­
file. The two sets of experiments consisted of 
measurements in a constant Brunt-Vaisala profile and 
in a variable profile. Once the background Brunt­
Vaisala profile was established, a rectangular, sym­
metrical airfoil wing was towed through the tank at 
a preset speed and angle of attack. A high-speed strut 
containing 19 measuring probes spaced 1 centimeter 
apart vertically was then shot across the wake of the 
wing, triggered by a laser timing system. The probes 
measured conductivity, which was converted to den­
sity perturbations by means of a pretest calibration. 
The data were then converted to fluid displacement 
values and displayed on raster plots (see Fig. 1, for 
example). The entire data-taking procedure is automat­
ed on a PDP-II computer so that the raster plots ap­
pear automatically after each experimental run. Each 
run produced a raster plot of the wake at a specific 
time after the passage of the wing. The output of all 
the experiments was a time history of the evolution 
of the vortex wake. 

In addition to the APL experiments, two other in­
vestigations have been reported 9, 10 that were directed 
more toward the gross features of the vortex motion 
(they were performed at higher values of F v ) than to­
ward a detailed description of the density field. They 
determined the time history of the position of the vor­
tex center and, in particular, the maximum height to 
which the vortex rises in the stratified fluid. Normal­
ly, with no stratification, the vortices would move 
unimpeded, but the presence of stratification limits 
that motion. 

All of the foregoing experiments were used to test 
the predictive capabilities of the FISHBONE computer 
code. 

COMPARISON OF PREDICTIONS WITH 
EXPERIMENTS 

The conditions of the tests run at APL were such that 
F v in Eqs. 6 and 7 was approximately 1/35. Follow­
ing the arguments describing the equations, this means 
that the resulting motion is described by a set of linear 
equations. There is no motion of the vortex pair, and 
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Figure 1-Measured displacements for constant Nease; 
t = 0,5 Brunt·Vaisala (BV) period, 

only internal waves are generated. However, the equa­
tions used to calculate the flow were the full set with 
the nonlinear terms retained. The results show that these 
terms are indeed insignificant for this case. 

The measurement resolution of 1 centimeter would 
have taxed the storage and speed of the computer do­
ing the numerical computations, so the grid chosen to 
calculate the flow had grid points placed every 2.54 
centimeters. Thus, when the data are presented, the 
experimental results are interpolated onto the com­
putational grid. 

It must be borne in mind that all the calculations 
to be presented result from an inviscid treatment of 
the problem. No viscous or turbulent phenomena have 
been considered. Regions where those phenomena may 
be important, such as the turbulent wake of the wing, 
will show the limitations of the present approach. 

Figure 2 shows the computational results, in raster 
plot form, for the first APL experiment with a con­
stant background stratification. The figure corre­
sponds to 0.5 (27r1 N), a time equal to one-half of a 
Brunt-Vaisala period. In order to compare the experi­
ment and the prediction, the experimental values of 
Fig. 1 are interpolated onto the same points of Fig. 
2; they both are shown in Fig. 3. 

The zero point on the abscissa is the middle point 
on the wing; the zero of the ordinate is the nominal 
vertical position of the wing in the tank. The agree­
ment at this early point in the development is not bad. 
Surprisingly, the levels and phase of the disturbance 
are correct, even in the turbulent wake region near the 
wing. Far above the wing, the agreement is also good, 
but, although earlier calculations show that the dis-

206 

22 

20 

'" 18 .... 
~ 
Q) 

E 
16 ';; 

c: 
Q) 

~ 
c: 14 
0 

';; 
' ~ 12 
a. 
Cl 
c: 

10 ' ~ 

E .g 8 
Q) 
u 
c: 6 .; 
"0 

ro 4 
u 
°e 
Q) 2 > 

0 

-2 
-80 -60 -40 - 20 0 20 40 60 80 

Transverse distance from wing centerline (centimeters) 
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Figure 3-Comparison of FISHBONE predictions and mea· 
sured displacements; constant N, t = 0.5 BV period . 

placement levels are decreasing in the intermediate re­
gion, the agreement there is not good. 
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That disagreement is obviously due to some initial 
transient related to starting the calculation and/ or the 
experiment , because the comparisons at 1.0, 1.5, and 
2.0 Brunt-Vaisala periods are quite good for the far 
field waves . They are shown in Figs. 4 through 6. All 
the figures show excellent agreement in both ampli­
tude and phase . Note in Fig. 6, the latest time shown, 
the residual of the turbulent wake and its alteration 
of the smooth wave pattern. Although it is difficult 
to distinguish in these plots, the calculations are al­
ways symmetric since no way was input to deviate from 
symmetry, whereas the experimental results are asym­
metric even away from the turbulent region. 

Another way to view the data is to plot contours of 
constant nondimensional density perturbation in the 
y -z plane of the vortex. This could be done with ei­
ther computed or experimental data, but only the com­
puted data will be displayed here. This type of plot 
serves a very useful purpose in subsequent discussions. 
Figures 7 and 8 show the density contours in the right­
half plane of the entire computational domain, at times 
equal to periods of 0.5 and 1.0 Brunt-Vaisala. Noth­
ing extraordinary can be observed . Note that at the 
right side boundary a small disturbance can be seen 
in the center of the field. But in general , the assump­
tion of no disturbance at the computational bound­
ary is reasonably valid and can be expected to be so, 
probably at least until 2.0 Brunt-Vaisala periods are 
reached; hence the good comparisons of Figs. 4 
through 6. 
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Figure 4-Comparison of FISHBONE predictions and mea­
sured displacement ; constant N , t = 1.0 BV period. 
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Figure 8-Density perturbation contours; constant N, t = 1.0 
BV period . 

The towing tank was stratified for the second series 
of tests with the variable Brunt-V aisala profile shown 
in Fig. 9. The corresponding profile used in the nu­
merical calculations is shown in Fig. 10. This type of 
profile corresponds to what is called an oceanic duct. 
Waves propagating within such a stratified back­
ground can be trapped in the peak N region, similar 
to the properties of a waveguide. The computational 
results that follow will bear this out. For this variable 
Brunt-Vaisala profile case, the reference value of N 
is taken to be N at the wing location (z = 0), again 
giving an F v value of approximately 1135. 

Figure 11 shows the raster plot comparison of dis­
placement produced by FISH BONE and the labora­
tory experiment at 1.0 Brunt-Vaisala period. Except 
for the region z < 7.5 centimeters affected by the tur­
bulent wake, where the phase is still good, the com­
parison is very good. The calculations even reproduce 
the node in the displacement between z = 12.5 and 
15.0 that is not present in the comparable time raster 
plot for the constant N case (Fig. 3). However, later 
(:::::2.0 Brunt-Vaisala periods), the phase comparisons 
are very poor because of the ducting phenomenon 
described above. The contour plots for the variable 
N case depict the ducting very clearly. Figures 12 and 
13 show the contours of density perturbation for the 
variable N case for 0.5 and 1.0 Brunt-Vaisala periods; 
the center of the duct is at z = 17.5. Even for the 0.5 
Brunt-Vaisala period time, there is a noticeable per­
turbation propagating to the right. At 1.0 Brunt­
Vaisala period (Fig. 13), a perturbation has reached 
the boundary and is being followed by a significant 
wave. The figures depict very graphically what is meant 
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by ducting of the internal waves. By the time 2.0 Brunt­
Vttisttltt periods are reached, the boundary condition 
of no perturbation has been badly violated, and wave 
reflections have taken place that destroy the good 
agreement found for the constant N case. 

Neither of these cases experienced any motion of the 
initial vortex pair because F v was quite small. Other 
experiments and an old theoretical prediction allow the 
nonlinear aspects of the FISHBONE code to be evalu­
ated. When a vortex moves in a stratified fluid, the 
presence of the stratification acts as a retarding force 
on the motion of the vortex. There is a transfer of ener­
gy between the kinetic energy of the vortex and the 
potential energy of the density perturbations. After 
some time, depending on the F v ' the vortex reaches 
a maximum distance away from its initial position and 
then reverses direction and falls back toward its start­
ing position. As in the previous cases, the controlling 
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Figure 14-Maximum rise height of vortex pairs . 

parameter is F v ; for different values of F v ' the rise 
height of the maximum vortex varies. 

A theory of Saffman 11 models the physics of the 
process and, without solving the exact Eqs. 6 and 7, 
predicts a linear relationship between rise height and 
F v . The experiments of Liu 9 and of Sarpkaya and 
Johnson 10 measure the vertical position of vortices 
produced in a manner similar to the APL experiments 
and yield the data shown in Fig. 14. This behavior was 
also modeled with the FISHBONE code by inputting 
wing velocities calculated to give specific values of F v 
in the range 0.5 to 1.75. The position of the maximum 
value of vorticity was tracked, and the farthest excur­
sion from its initial point was taken to be the maxi­
mum vortex rise height. The predicted values are also 
plotted on Fig. 14, normalized by the initial vortex 
separation distance, b. 
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It can be seen in the figure that the linear relation­
ship between rise height and F v predicted by Saffman 
is confirmed, at least for F v ::; 1.0. The constant of 
proportionality given by Saffman, based on the as­
sumptions he made, is too large, but obviously the 
physical reasoning is sound. The experiments and the 
FISHBONE predictions agree very well for the low 
range of F v, giving a proportionality constant of 
1.20. This indicates that for these lower energy vor­
tices the retardation of the motion is strictly an invis­
cid process because FISHBONE is inviscid, and the 
energy is simply being transferred from the vortex to 
the density perturbations. However, as F v increases, 
the FISH BONE results deviate above both the linear 
relationship and the experiments, implying the need 
for some dissipative mechanism like turbulence. The 
actual numerical calculations also show a tendency for 
the energy to be deposited increasingly in smaller 
scales, another sign that a dissipative process is re­
quired to remove the energy. Were there an energy­
absorbing mechanism in the code, the motion would 
not be as vigorous, and the predicted rise height would 
approach the experimental results for the "higher" 
Froude numbers. 

CONCLUSIONS 
The consequences of stratification on the classical 

inviscid fluid dynamics problem of motion of a pair 
of counterrotating vortices have been discussed in the 
context of explaining the capabilities and limitations 
of numerical predictions. More complications would 
result from the inclusion of more physics such as a tur­
bulence model for the vortex rise problem or proper 
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boundary conditions that let the propagating distur­
bance pass out of the restricted computational domain 
used for the ducted propagation problem. In spite of 
the relative simplicity of the inviscid approach, it has 
been shown that within the range of validity of the 
equations chosen to represent the physics and of the 
numerical procedures used to solve the equations, ex­
cellent agreement with experimental results and in­
sights into the physical mechanisms can be obtained. 
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