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ROBERT R. NEWTON 

THE SECULAR ACCELERATION 
OF THE EARTH'S SPIN 

The spin rate of the earth varies constantly. Daily changes are associated with atmospheric winds; 
long-term changes are related to lunar and solar tidal friction and other slowly changing geophysical 
parameters. The changes in the earth's spin rate reported here have occurred over periods measured 
in centuries and are based on observations in historical astronomical texts. The (negative) secular spin 
acceleration was -19.8 parts per billion per century around the year 600 AD and is now - 8.6 parts 
per billion. These changes in spin rate are due to contributions from tidal friction and from an effect 
proportional to the square of the time-varying magnetic dipole of the earth. When these contribu
tions are subtracted from the observed acceleration, a residual contribution of + 41 parts per billion 
per century remains that is probably due to variations in the diameter of the earth's core and other 
geophysical changes. 

TIDAL FRICTION 
One face of the earth is closer to the moon than its 

center is, so the moon's gravitation tends to pull that 
face away from the center. Similarly, the center is 
closer than the opposite face , so the moon's gravita
tion tends to pull the center away from the opposite 
face. As a result, the earth tends to take on an ellip
soidal shape (Fig. 1). 

However, the earth does not always present the same 
face to the moon. Instead, it rotates with respect to 
the earth-moon line one time in a lunar day, which is 
about 25 hours. As the earth tries to maintain the el
lipsoidal figure that is demanded by the moon's gravi
tation, each point in it goes up and down twice in a 
lunar day, giving rise to the lunar tide. There are two 
tides in a lunar day. 

If the tidal motion took place without friction, the 
tidal bulges would be directly under and directly op
posed to the moon (Fig. 1). In that configuration, the 
gravitational force would point directly along the 
earth-moon line, and there would be no effect on the 
rate of the earth's rotation. 

In the actual case, there is friction in the tidal mo
tion, with the result shown in Fig. 2. The motion lags 
the tide-raising force, so that the bulges are displaced 
in the direction of rotation. The gravitational force is 
no longer along the earth-moon line, passing through 
the center of the earth, and the gravitation exerts a 
torque on the earth. I think the reader can see from 
the figure that the torque is in the direction opposed 
to the earth's rotation. 
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Figure 1-The tide-raising force. Because the moon 's gravi
tation varies with distance, it tends to pull the near side of 
the earth away from the center and to pull the center away 
from the far side. 
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Figure 2-Tidal friction . As the earth moves up and down 
in response to the tide-raising force, friction causes the mo
tion to lag the force. As a result , a torque tends to slow up 
the earth's rotation . 

In other words, friction in the lunar tide tends to 
retard the earth's spin. 
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Of course, there is an equal but opposite torque act
ing on the moon. The direction of this torque is such 
that it increases the angular momentum of the moon. 
However, in order to increase its angular momentum, 
the moon must move into a larger orbit, in which it 
has a smaller angular velocity. Therefore, tidal fric
tion decreases both the spin angular velocity of the 
earth and the orbital angular velocity of the moon. 

There is also a solar tide and friction that affects 
the spin of the earth and its orbital motion around the 
sun. Although the sun's gravitational effect on the 
earth is much larger than the moon's, the solar dis
tance is so much greater that the solar tide is actually 
less than the lunar tide. Friction in the solar tide is large 
enough that we have to take account of it, but the lu
nar tide dominates the situation. 

Tidal friction is increasing the length of the day by 
about a millisecond in a century. 

THE NEED FOR OLD DATA 
By modern astronomical data, I mean data obtained 

since the introduction into astronomy of the telescope 
and pendulum clock, which happened about three cen
turies ago. By old data, I mean data obtained without 
the use of the telescope and pendulum clock. 

The modern data are so accurate that we readily ob
tain fairly accurate values for the acceleration of the 
moon and of the earth's spin. Spencer-Jones 1 ana
lyzed a large volume of data and obtained - 22 sec
onds of arc per century per century for the acceleration 
of the moon. (I will take the second of arc per centu
ry per century for the standard unit of the moon's ac
celeration and will omit the units in the rest of the 
article.) In a later work (Ref. 2, p. 457), I used some 
additional data and obtained - 28. We may take it that 
the acceleration of the moon is reasonably well known 
and that the difference between - 22 and - 28 indi
cates the accuracy with which it is known. 

No source except tidal friction has been suggested 
for the acceleration of the moon, so I tentatively take 
- 28 for the lunar acceleration as a measure of lunar 
tidal friction. By using the known astronomical con
stants, we can then estimate the effect of lunar tidal 
friction on the rotation of the earth. From this, in turn, 
we can use the relations between the astronomical pa
rameters of the sun and moon and estimate the effect 
of solar tidal friction on the earth's spin acceleration. 
From these considerations, we find (Ref. 3, p. 219) 
that the total contribution of tidal friction to the ac
celeration of the earth's spin is - 32.6 parts in 109 

per century if the lunar acceleration is - 28. 
In the rest of this article, I will use liM for the lu

nar acceleration when it is given in the units stated. 
I will use y for the secular acceleration of the earth's 
spin when stated in parts in 109 per century. Thus, 
for the contributions from tidal friction, we have liM 
= -28 and y = -32.6. 

We can also measure y independently. The results 4 

are that y is an order of magnitude larger than - 32.6, 
that it chan.ges at irregular intervals that average about 
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4 years, and that it is about as likely to be positive as 
negative. The latter fact alone tells us that most of the 
contribution to y does not come from tidal friction; 
y would have to be negative if that were so. 

That fact also tells us that we must average y over 
a long time period if we are to learn anything about 
tidal friction. To get an average that is significant to 
a size of 1, we must average over about three centu
ries; this means that the modern data; in spite of their 
accuracy, can contribute only one data point to our 
study of tidal friction. To learn more abouty, we must 
have recourse to old data. 

Old data are not very accurate, but they do not need 
to be in order for us to learn something useful about 
the accelerations. The value of an observation depends 
on the geocentric angular velocity of the body being 
observed. The moon has by far the largest angular ve
locity of any object in the heavens, so that lunar ob
servations are by far the most useful. In fact, for 
simplicity, I will use only lunar observations in this 
study. 

Old lunar observations give poorly conditioned 
equations for finding both liM and y, so we cannot 
determine both of the accelerations with a satisfacto
ry accuracy from the old observations. However, we 
have a satisfactory estimate of liM from new data, so 
we will use it in analyzing the old data. 

ACCELERATIONS OF THE SUN AND MOON 
If the earth's spin is accelerating, the length of the 

day is not constant, and the day cannot be taken as 
the unit of time. However, the acceleration of the spin 
has been known only recently, and all old astronomi
cal observations were made using the day as the unit 
of time. In the time base in which the day is the unit, 
the spin is exactly one rotation (with respect to the sun) 
per day, and it is not accelerating. 

In its place we have the acceleration of the sun. If 
y and hence the spin acceleration are negative, the 
length of the day is increasing and the number of days 
in a year is getting smaller. That is, the sun completes 
one full revolution around the earth in a smaller num
ber of days, so that it appears to be speeding up. Thus, 
when the day is the unit of length, the sun has a posi
tive acceleration if the value of y is negative. 

The system of time in which the day is the unit of 
time is called solar time. If we adopt a time system 
in which the sun has no acceleration, that system is 
called ephemeris time. As far as we know now, the 
planets do not have any acceleration in ephemeris time, 
but the moon does. However, its acceleration with re
spect to ephemeris time, which we have been calling 
liM' is not the same as its acceleration with respect to 
solar time. In solar time, it has an additional acceler
ation, positive just like the sun's, that comes from the 
variation in the length of the day. 

Thus the old observations were made using solar 
time as the time base. This fact tells us how to esti
mate y from an old observation. We calculate the 
ephemeris time when the moon had the observed po-
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sition, using nM = - 28 in the calculations, which 
supplies the value of solar time when it had the same 
position. The difference between ephemeris time and 
solar time depends on the acceleration y of the earth's 
spin, and we calculate what value of y leads to the re
quired difference between ephemeris time and solar 
time. 

SOLAR ECLIPSES 
When the moon passes between an observer and the 

sun, part of the sun is eclipsed. But because the moon 
is relatively close to the earth, its direction at any giv
en moment depends on where the observer is. For some 
observers, the moon appears to miss the sun complete
ly, and, for others, the moon may appear directly in 
front of the sun, and the sun may be totally eclipsed. 

The distance to the moon is not constant but varies 
by more than 5 percent from its average value. If the 
moon is close to the earth when an eclipse occurs, it 
appears large enough to cover the sun completely, and 
such an eclipse is called total. If the moon is far from 
the earth, it is unable to cover the sun totally, and such 
an eclipse is called annular because a small ring or an
nulus of the sun is left visible at the height of the 
eclipse. About half of all eclipses are annular some
where. 

An eclipse does not appear to be the same for all 
observers. If an observer sees the sun and moon in a 
straight line at the height of the eclipse, he will see ei
ther a total or an annular eclipse. To cover both cases, 
let us say that he sees a central eclipse. Because the 
sun and moon are so nearly the same apparent size, 
an eclipse is central only in a rather narrow zone. For 
an observer outside this zone, the eclipse is never cen
tral and is said to be partial. For an observer far 
enough away from the central zone, the moon misses 
the sun entirely and there is no eclipse. A particular 
eclipse is visible over only a relatively small part of the 
earth, and observers in most places will not see any 
eclipse, even though it may be central to some ob
servers. 

This fact allows us to estimate y by using statements 
that an eclipse of known date was seen at a particular 
place. To simplify the explanation, let us suppose that 
a record says that an eclipse of known date was total 
at the particular place. When we calculate the circum
stances of the eclipse using nM = - 28 and y = 0, we 
will find that the eclipse was not total at the specified 
place. To make it total, we have to rotate the earth 
without changing the ephemeris time of the eclipse un
til the observer is brought into the narrow zone with
in which the eclipse is total. 

If the record does not say that the eclipse was total, 
we do the same thing. If the eclipse was not actually 
total, we will make an error in the resulting estimate 
of y; however, the error will average out if we use 
enough observations. Thus we can use records of par
tial eclipses as if they were central and not make an 
error if we have enough records. 

A large eclipse, even though not central, is an im
pressive sight, and the occurrence of eclipses was fre-
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quently recorded in old annals, chronicles, and his
tories. Thus much of the information we use in find
ing y does not come from astronomy at all but from 
simple nontechnical sources. In fact, we have more old 
historical records of eclipses than we have old astro
nomical observations of the moon. 

THE IDENTIFICATION GAME 
Unfortunately, the method of using historical rec

ords of solar eclipses was misused badly for over a cen
tury, during which time it became the most popular 
method of finding the astronomical accelerations. 
Since much of the resulting literature on the subject 
is still widely cited, I want to caution the reader and 
tell him why the method so often used is wrong. 

In using a record that an eclipse was seen at a known 
place, it is obviously crucial to have the date of the 
eclipse. Of course, since there are usually only two so
lar eclipses in a year, and since they will rarely be visi
ble in the same place, we can tolerate an uncertainty 
of a few years in the historical date of a record and 
still determine which eclipse could have been seen at 
the stated place. That is, we can usually determine the 
date exactly if the record can be dated from historical 
evidence within a few years. 

However, it became popular to use references to 
eclipses that could not be dated closer than half a cen
tury. The date was then "determined" by means of 
what I call' 'the identification game," and the result
ing record was used to estimate y. The trouble with 
the procedure is that it was reasoning in a circle. 

To play the identification game, the player started 
by calculating the magnitudes of all eclipses in the pos
sible time frame that could have been seen at the place 
given in the record. The eclipse with the largest calcu
lated magnitude was taken to be the correct one. 

An example of an eclipse that was widely used in 
the astronomical literature is the so-called "eclipse of 
Archilochus." Archilochus was a Greek soldier and 
a poet whose poems can be dated only as being be
tween about - 710 and - 640. Part of one of his 
poems is translated in Ref. 5: "Zeus ... made night from 
midday, hiding the light of the shining sun, and sore 
fear came upon men." 

There are several things wrong with using this pas
sage of poetry as an eclipse record in the astronomi
cal literature. For one thing, the passage does not say 
that the darkness was caused by an eclipse. There is 
the phenomenon called a dark day, which probably 
happens at a particular place as often as a central 
eclipse of the sun does. A dark day is probably caused 
by weather conditions, and it is just as impressive as 
an eclipse. However, let us grant that the passage does 
refer to an eclipse and see where it leads us. 

Those who want to use the passage as an eclipse rec
ord are forced to assume that Archilochus could have 
written it only if he had personally witnessed the 
eclipse. Since one of the characteristics of a poet is his 
imagination, Archilochus could have imagined the ef
fect of seeing an eclipse if he had ever read or heard 
about one. The eclipse Archilochus described does not 
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have to be one that was seen at all. Nonetheless, let 
us assume that the passage does refer to an eclipse that 
Archilochus actually saw. 

The biggest trouble in using an undated passage is 
that it is necessary to assume a value of y to use in 
calculating the magnitudes used in dating it, and the 
identification depends on the value of y used. For ex
ample, if we take y = -19, we conclude that the 
eclipse is that of - 656 April 15; but if we take y = 
- 22, we conclude that the eclipse is the one of - 647 
April 6. 

Now, in using the method, we turn around and use 
the identification in finding y. Since the identification 
we make is that of the largest eclipse, the value of y 
we will get from the identified eclipse is always close 
to the value of y we assumed in making the identifica
tion. Continuing with the eclipse of Archilochus, we 
get y = - 19.5 if we take the eclipse to be that of - 656 
April 15, and we get - 22.2 if we take the eclipse to 
be that of - 647 April 6. 

Actually, those who used the identification game 
used it to get the acceleration of the moon with respect 
to solar time, but the principle is the same. In order 
to play the identification game, it was necessary to as
sume a value for the acceleration with respect to solar 
time; the player then used the identification to find 
the acceleration he had assumed in the first place. It 
is this process of reasoning in a circle that I wish to 
emphasize and not the specific variable used. For sim
plicity, I will write as if the older work were done in 
terms of ephemeris time, even though it was done in 
solar time. 

I believe that Sir George Airy, who was the British 
astronomer royal from 1835-81, was the first person 
to use the method of reasoning in a circle. 6

,7 From 
then until 1970, when I pointed out the fallacy in
volved,8 this method was the most popular, although 
not the only, one used to find the accelerations. 

It is interesting that the value found for y was rath
er good, even though the method is reasoning in a cir
cle that cannot yield information. The reason for this 
is that writers before Airy, using valid methods and 
data, had found a fairly accurate value for the acceler
ation. The value was assumed in starting the reason
ing in a circle, which, in turn, necessarily yielded a 
value close to the one that was used to start the process. 

RESULTS FROM SOLAR ECLIPSES 
We can now turn to valid results obtained by using 

solar eclipses. In two recent works,2,3 I have analyzed 
631 records that tell- us that an eclipse of the sun was 
visible on a known date in a known place. The records 
fall into three broad classes. One class says that the 
sun was totally obscured during the eclipse. A second 
class says that stars (including planets in this context) 
could be seen during the eclipse but does not say that 
the eclipse was total. The third class merely says that 
the eclipse was seen but makes no implication about 
its magnitude. 

For eclipses since about 1000, we can calculate the 
magnitude of the eclipse with no significant uncer-
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tainty. For such records, I have studied the departure 
of the magnitude from unity, which corresponds to 
a total eclipse. (The magnitude is the ratio of the part 
of the solar diameter that is eclipsed to the entire di
ameter.) For records that explicitly say that the eclipse 
was total, the magnitude is actually less than unity in 
a large number of cases, and the deviation from to
tality is 0.030 on a standard deviation basis. For the 
records that say the stars could be seen, the cor
responding number is 0.051, and for the records that 
say nothing about the magnitude, the standard devia
tion is 0.177. 

This tells us, among other things, that we may not 
use the identification game even to find the date of 
an eclipse, even if we do not go on to find the acceler
ation from that date. The basic assumption back of 
the identification game is that the recorded eclipse was 
the one with the largest magnitude during the possi
ble time period. We see now that this is not necessari
ly so. For a record that says that the eclipse was so 
large that stars could be seen, the magnitude can easi
ly be as small as 0.90. With this much range in the mag
nitude, either date will fit the eclipse of Archilochus 
with either value of y, and we do not get a unique 
choice for the date. 

In fact, I do not know of any case in which we have 
successfully identified an eclipse when the record leaves 
an uncertainty of more than a few years on historical 
grounds alone. 

Returning to the records, the dates range from -719 
February 22 to 1567 April 9. I have divided the records 
into 16 time bins, and I have analyzed the records from 
each time bin separately. In doing so, I weight each 
record according to the information it gives about the 
magnitude; I take the weight to be inversely propor
tional to the square of the standard deviation of the 
magnitude that was stated above for each class of 
record. 

The results are shown in Fig. 3, where I give a val
ue and an error bar for y as derived from the records 
in each time bin. (The year for a plotted point is the 
average year for the data used in getting that point.) 
Note that all the points through the year 1005 agree 
well with each other except for the point at the year 
772. Since the year 1000, though, y shows a definite 
tendency to increase algebraically with time; that is, 
to decrease in size. 

QUANTITATIVE OBSERVATIONS 
The results just discussed were obtained from 

qualitative records that merely say that a certain solar 
eclipse was visible at a known point. Now we turn to 
quantitative observations in which some position or 
phenomenon was measured quantitatively. The old 
quantitative observations that I have discovered 3 are 
summarized in Table 1, where the observations have 
been grouped by type and, within each type, by time 
bins like those used with the solar eclipses. 

The first column in the table gives the average date 
of the observations within a group, and the second 
column gives the type of observation. The third 
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Figure 3-y as derived from historical records of solar 
eclipses. Note the definite tendency of y to increase algebrai
cally with time. 

Table 1-Quantitative observations. 

Average 
Date Type oj Observation y a(y) 

-567 Moonrise and moonset -10.5 5.8 
- 567 Lunar conjunctions -22.6 6-4 
-441 Moonrise and moonset -38.3 7.8 
-378 Moonrise and moonset -22.9 13.3 
-378 Lunar conjunctions -25.5 3.6 
-373 Times of lunar eclipses -22.7 0-4 
-321 Time of solar eclipse -22.1 0.9 
- 252 Moonrise and moonset -29.0 6.0 
-252 Lunar conjunctions -19.1 1.3 
-250 Moonrise and moonset -25.1 5.2 
-250 Lunar conjunctions -20.3 2.8 
-135 Time of solar eclipse -22.8 3.3 
- 88 Time of solar eclipse -24.8 2.7 

364 Times of solar eclipses -28-4 5.0 
506 Lunar conjunctions -20.0 4.6 
622 Mean lunar elongation -15.7 6.3 
932 Magnitudes of solar -19.8 2.8 

eclipses 
941 Times of solar eclipses -16.5 0.8 
948 Times of lunar eclipses -19.7 0.9 
979 Lunar eclipse at -18.8 2-4 

moonrise 
1000 Mean lunar elongation -19.3 9.2 
1092 Time of lunar eclipse - 5-4 11.7 
1221 Magnitude of solar - 1.4 25.0 

eclipse 
1260 Mean lunar elongation -46.9 40.0 
1333 Mean lunar elongation -30.9 16.3 
1336 Measured lunar longitude +29.1 21.5 
1472 Times of lunar eclipses -23.2 7.9 
1480 Times of solar eclipses -24.2 7.8 
1790 Modern solar data - 9.1 2.8 
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column gives the value of y inferred from the obser
vations in a group, and the fourth gives the standard 
deviation of the inferred value. Some of the types of 
observation need explanation. 

The Babylonian month began at sunset on the first 
day after a new moon that the moon could be seen 
in the western sky after sunset. The Babylonian as
tronomers regularly measured the time interval be
tween moonset and sunset on that day. Similarly, near 
the end of the month, they measured the interval be
tween moonrise and sunrise. Near the full moon, they 
measured the time intervals of the four possible per
mutations of moonrise and moonset with sunrise and 
sunset. Altogether, then, they measured an interval be
tween moonrise or moonset and sunrise or sunset six 
times each month, weather permitting. The lengths of 
these intervals form the groups called' 'moonrise and 
moonset" in Table 1. 

Many astronomers recorded the time when the 
moon passed a particular star or when it was a given 
distance from the star. These measurements are the 
"lunar conjunctions" in Table 1. There is also one 
measured value of the lunar longitude in the table. 

I believe that the times and magnitudes of eclipses 
are obvious. This leaves the "mean lunar elongation" 
to explain. We have a number of old tables of the sun 
and moon from which the values are taken. The ta
bles include tables of the mean positions of the sun 
and moon, along with tables or formulas for calculat
ing the difference between the mean position and the 
actual position at any time. The tables of the mean 
positions had to be based on observations. I have al
ready remarked that only lunar observations are sen
sitive enough to the accelerations to be useful in this 
study, so we omit the tables of the sun. 

It is clear when we study the methods astronomers 
used to construct their tables of the moon that they 
based them on measurements of the lunar elongation, 
that is, the angular distance of the moon from the sun. 
Hence, if we subtract the mean position of the sun 
from that of the moon, we obtain the mean lunar elon
gation, which represents observation. The date I as
sign to a value of the mean lunar elongation is the 
approximate date of the observations used to construct 
the tables, not the epoch to which the tables are re
ferred. 

Table 1 also contains a line called "modern solar 
data" that I will come back to. 

The values and errors in Table 1 are plotted in Fig. 
4, except for the modern solar data. When we com
pare Fig. 4 with Fig. 3, we see that the points in Fig. 
4 have more scatter, in spite of being based on quan
titative observations. There are two reasons for this. 
First, old quantitative astronomical observations were 
not very accurate. Second, there are not as many of 
the quantitative observations. Figure 4 is based on only 
221 observations, while 631 observations were used in 
drawing Fig. 3. 

In spite of the generally larger scatter, the error bars 
are smaller in Fig. 4 than in Fig. 3 at two stages in 
history. One is in the - 4th century at the height of 
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Figure 4-yas derived from quantitative observations that 
involve the moon. The points show the same tendency to 
change with time as those in Fig. 3, but the tendency is not 
as obvious to the eye. 

Babylonian astronomy. The other is in the 10th cen
tury at the height of Islamic astronomy. At those two 
stages in history, we have standard deviations in y that 
are less than 1. 

Also in spite of the larger scatter, we can see the 
same tendency in Fig. 4 as in Fig. 3. That is, y shows 
a definite tendency to increase algebraically with time. 
Furthermore, the values of y from the two figures 
show excellent agreement. 

In drawing Fig. 4, I have represented the types of 
observation that have the same date in Table 1 by a 
single point. Thus, for example, I have represented 
both the moonrise and moonset value and the value 
from lunar conjunctions by the single value - 16.0 
± 4.3 for the year - 567. I have also represented the 
four consecutive values with dates from 1221 through 
1336 by a single value because of the large standard 
deviation that each of the individual values has . 

COMBINED RESULTS 
We are now ready to combine the results from Figs. 

3 and 4 to obtain a single set of results from both the 
qualitative and quantitative observations. In doing so, 
I have put all the observations of both classes into 19 
time bins, with dates ranging from - 660 to 1479. For 
all the observations in a single time bin, I have derived 
a single estimate of y and an associated standard devi
ation. The results are plotted in Fig. 5. 

In addition, Fig. 5 contains a point at the year 1790. 
This is from the line for modern solar data in Table 
1 and is the value of y derived from modern observa
tions of the sun made with the telescope and pendu
lum clock. It is 

y = -9.1 ± 2.8. (1) 
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Figure 5-y as derived from all old observations involving the 
moon, except for the pOint at the year 1800. That point is de
rived from modern observations of the sun. The curve is the 
best-fitting quadratic. 

Note that we do not know the value of y as accurately 
for modern times as we know it for the - 4th century 
from Table 1. 

The curve drawn in Fig. 5 is the quadratic function 
of time that best fits the data. In deriving the best
fitting function, it is desirable to take the origin of time 
to be at about the center point of the data. I take this 
to be the year 600. If we let C be the time measured 
in centuries from the year 600, the best-fitting quad
ratic is 

y -19.86 ± 0.83 + (0.487 ± 0.102) C 
+ (0.0229 ± 0.0158) C 2

• (2) 

In the year 600, when C = 0, we know y with an 
uncertainty of less than 1. It is hard to estimate the 
uncertainty in other years because the uncertainties in 
the individual coefficients are not independent. How
ever, we see from Table 1 that the uncertainty is less 
than 1 in the - 4th century and in the 10th century, 
as I have already commented. I think it is fair to say 
that Eq. 2 represents y with an uncertainty of less than 
1 from - 600 to 1200. 

The estimate of the linear coefficient in Eq. 2 is al
most five times its standard deviation, so it is highly 
significant. There can be little question that y has 
changed by a large amount within historic times. The 
estimate of the quadratic coefficient is only about 1 Y2 
times its standard deviation, which is not highly sig
nificant. That is, a linear variation of y with time fits 
the data almost as well as a quadratic variation. 
Nonetheless, there is an independent reason for sus
pecting a quadratic term, which I will take up in dis
cussing the sources of y . Thus it is probable that the 
quadratic term is genuine. 
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The value of y from Eq . 2 has an extremum near 
the year - 460, when its value was about - 22.4. Its 
value for the year 2000 (C = 14) is about - 8.6. Thus 
y has changed by a factor of almost three during 
historic times. 

SOURCES OF THE ACCELERATION 
Our first problem in looking for sources of the ac

celeration y is to find a source that can vary signifi
cantly with time during a period as short as historic 
time. All indications are that the oceans have stayed 
nearly constant during that time. To be sure, there 
have been slight changes in sea level and in the amount 
of ice that is interacting with the oceans, but the 
changes could hardly have changed tidal friction by 
a factor of three. Thus there is almost surely an im
portant source of yother than tidal friction, even af
ter we smooth out the violent fluctuations that were 
described near the beginning of this article. 

The only important geophysical property of the 
earth that has changed by an important amount dur
ing historic time seems to be its magnetic moment. 

Smith 9 gives estimates of the magnetic moment from 
about - 1050 to about 1600, and his estimates vary 
by a factor of two or three during that time. 

When we have spoken of the earth's spin accelera
tion up to this point, we have tacitly meant the angu
lar acceleration of the crust, where the observers lived. 
This angular acceleration is not necessarily proportion
al to the time derivative of the earth's total angular 
momentum, and the angular velocity of the mantle 
plus crust may not be changing in the same way as the 
angular velocity of the core, where most of the mag
netic field originates. 

In other words, the core and mantle may be ex
changing angular momentum through the agency of 
the magnetic field. If they are, the exchange should 
take place mainly through induced effects, so it should 
be proportional to the square of the magnetic dipole 
moment. Accordingly, in Section X.5 of Ref. 3, I 
squared Smith's values of the dipole moment M and 
passed a smooth curve through the values. Finally, I 
fitted the values of y from Fig. 5 to a function of the 
form a + bM2. 10 The result is 

USES FOR ANCIENT ECLIPSE RECORDS 

In spite of arguments about the astronomical interpre
tation of ancient eclipse records, one thing is certain-the 
more that can be found, the more useful they will be. The 
sport of wringing information of value in astronomy from 
historical records has long since been made respectable. It 
is even tempting to wonder whether the present understand
ing of supernovae would have been possible without the 
Chinese record which was recognized, in retrospect, to be 
a first-hand account of the star from which the Crab neb
ula was formed (but with a pulsating neutron star left over). 
The reality of the Maunder sunspot minimum in the early 
seventeenth century was established (by J. Eddy) by por
ing over ancient records, this time, to be sure, contem
porary astronomical records. 

The use of ancient records of solar and lunar eclipses 
is even longer established. Robert R. Newton begins an ele
gant paper on the acceleration of the Earth's spin 
(Geophys. J. R. Astro. Soc. 80, 313-328; 1985) with an 
account of how Edmund Halley concluded from some ob
servations of lunar eclipses due to Ptolemy that the length 
of the year had been decreasing. This implied, said Hal
ley, "the necessity of the world's coming to an end, and 
consequently that it must have had a beginning, which 
hitherto has not been observed in anything that has been 
observed in Nature." For his part, Newton wonders how 
Halley could have come to the conclusion that the Sun was 
accelerating (when in reality, the opposite is the case) and 
asks a little wistfully that "if any reader knows the basis 
on which Halley found the Sun is accelerating, I would ap
preciate hearing of it." 

Since much of Newton's own argument is concerned with 
demonstrating the pitfalls of using the records of eclipses, 

(Reprinted by permission from Nature, Vol. 313, No. 6005, 
p. 733, Copyright © 1985 Macmillan Journals Limited.) 

126 

he should not be so surprised. The potential value of an
cient eclipse data stems from the fact that they provide a 
nearly exact measurement of the relative longitude of the 
Sun and Moon (ideally zero for a solar eclipse and 180 0 

for a lunar eclipse) at some distant epoch. In principle, the 
only changeable elements in this equation are the rate of 
the Earth's rotation on its axis and the angular velocity 
of the Moon, which are both affected by their mutual tid
al interaction. In practice, so people have been arguing since 
Halley's time, it should then be possible to calculate from 
ancient eclipse observations the deceleration of the Earth's 
spin even as a function of time. 

This is precisely what F. R. Stephenson and L. V. Mor
rison did at the Royal Society's meeting on rotation in the 
Solar System a year ago (Phil. Trans. R. Soc. A313, 47; 
1984). Their objective, like Newton's now, was to identify 
the secular change, whatever it may be, in the rate of the 
Earth's rotation. One obvious complication is that the cal
culated secular deceleration of the Earth's rotation at
tributable to tidal action is a mere 2.4 milliarc-seconds per 
century. 

Stephenson and Morrison used a wealth of records, an
cient and modern, spanning almost 2,700 years. The earli
est data come from Babylonian records, both of solar 
eclipses and the Moon rising while already eclipsed, with 
a modest admixture of Chinese information. With the ad
vent of telescopes (and accurate timekeeping) in the past 
three centuries, occultations of stars by the Moon have be
come a more accurate way of pinning down the data. One 
of the striking features of the data set is the poverty of the 
information available for the medieval period. 

The mechanics of Stephenson and Morrison's analysis 
is outwardly simple. One neat way to describe it is by the 
difference between Universal Time (UT), astronomical time 
measured strictly by the Earth's rotation, and Ephemeris 
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y = 8.9 - 0.2268 M2. (3) 

The term - 0.2268 M2 is the magnetic contribution to 
y, while the constant 8.9 is the total contribution from 
all other effects. 

Equation 3 gives a very good fit to the data. Fur
ther, both Eqs. 2 and 3 require y to have an extremum 
at about the same time. This is a stronger reason for 
taking y to be a quadratic function of time than the 
statistical significance of the quadratic term in Eq. 2. 

I calculated near the beginning of this article that 
the contribution of tidal friction to y, in both the lu
nar and the solar tides, is - 32.6. When we compare 
this to the constant term in Eq. 3, we see that the to
tal contribution of all sources other than tidal and 
magnetic must be + 41.5, which is larger in magnitude 
than the contribution of tidal friction. 

Many writers have suggested contributions to y oth
er than the tidal and the magnetic, but only three show 
promise of contributing significantly to a value as large 
as 41.5. The first is a change in the size 0 f the earth's 
core. As the core grows, it means that dense material 

Time (ET), the smoothed version of UT introduced just over 
thirty years ago to provide a more uniform measure of the 
independent variable in the dynamics of the Solar System. 

The transformation from one system to the other requires 
that allowance should be made for the acceleration of the 
Moon's longitude, supposed to be entirely the consequence 
of tidal interaction, which was originally taken to be 
- 22.44 arc-seconds per century (and which Stephenson and 
Morrison think should be 26 in the same units based on 
observations of the transit of Mercury). Then the differ
ence between UT and ET at any stage should be a measure 
of the departures of the rate of the Earth's rotation from 
a fixed value. 

The upshot of the Stephenson and Morrison analysis 
seems to be clear-for the past millennium, the secular 
change in the length of the day has amounted to 1.4 ms 
per century, but before that, the rate was greater, more 
like 2.4 ms per century. It goes without saying that, on the 
face of things, the more ancient records are in some ways 
the most telling-the difference between UT and ET in
creases with the square of the time elapsed. 

And of course, the most ancient records do not depend 
on the timekeeping (if any) used for making the observa
tions; provided that the date of observation is known (or 
can be calculated or inferred) the equations for the mo
tion of the Sun and the Moon will suffice to fix the time 
at which an eclipse occurs so long as it is known where the 
event was seen (and so long as it can fairly be assumed to 
have been a total eclipse). 

Newton's argument sets out to discard eclipse data that 
are for one reason or another unreliable. He spends more 
than a page of his printed paper demolishing the case for 
using as a datum the eclipse whose description is included 
in a poem by the Greek soldier-poet Archilochus, who is 
known to have divided his life between two islands in the 
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migrates from the mantle, where it has a large radius 
of gyration, to the core, where it has a small radius 
of gyration. This decreases the earth's moment of in
ertia and thus increases its angular velocity. 

The second is a change in the amount of glaciation. 
Most glaciers are found at high latitudes, where they 
have a small radius of gyration. If a glacier melts, in 
whole or in part, its water runs into the sea and in
creases sea level all over the earth. This increases the 
radius of gyration of the earth and decreases its angu
lar velocity. 

The third change is cosmological in origin. It seems 
to be well established that the universe is expanding, 
which lowers the average density of matter in the uni
verse. According to some theories of gravitation, this 
causes a change in the constant of gravitation, which, 
in turn, causes a change in the length of the year with
out changing the length of the day. Thus the earth's 
spin velocity would appear to change if the year is the 
unit of time. 

We do not have the basic information that is need
ed to calculate the contributions that these changes 

Aegean. The date is what perplexes Newton, who concludes 
that the eclipse described was either that of 6 April, 647 
BC or that of 15 April nine years later, and that a suitable 
choice of values for the acceleration of the Moon's longi
tude would have made it visible from either island. Both 
Dicke and Lyttleton, Newton says, used this eclipse in 
different connections. 

Newton has some good clean fun at the expense of what 
he calls the "identification game" supposed to have been 
invented by Airey more than a century ago, in which peo
ple have been used to assuming a value for the lunar ac
celeration, using this to calculate past eclipses, using eclipse 
records to pick on one and using the result to recalculate 
the lunar acceleration. It is not surprising, Newton says, 
that the answer is usually not very different from the start
ing value, for the argument is circular. He is probably right 
to insist that such data do need careful scrutiny before they 
are used for serious purposes. The merit of his own analy
sis is its use of data such as those gathered by the Babylo
nians for the definition of their calendar consisting of 
measurements of the angular displacement between the Sun 
and the Moon at new moon. 

Newton may have overlooked the way in which safety 
can be found in numbers, for within the uncertainties his 
conclusion is not sharply different from that of Stephen
son and Morrison. Briefly, he concludes that the decelera
tion of the Earth's spin has declined by a factor of about 
two shice 500 BC. He suggests that geomagnetism may pro
vide the explanation. A host of others, such as post-glacial 
isostacy, would fit the bill. What stands out is that the an
cient records, consistent among themselves, still have much 
more weight in estimating the secular deceleration of the 
spin than the more accurate modern measurements, be
fogged as they are by the irregular variations. 

John Maddox 
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may make to y. All we can say is that the contribu
tions may each be of the order of 10 and that each 
may be positive. 

SUMMARY 

We have analyzed 852 observations that involve the 
moon, with dates ranging from - 719 to 1567. We 
have also analyzed observations of the sun made with 
the telescope and pendulum clock in modern times. 
As a result, we have been able to find y, the accelera
tion of the earth's spin, as a function of time over the 
past 2700 years. 

The result is given in Eq. 2. y has varied quadrati
cally with time, having an extremum about the year 
- 460. Its value at that time was about - 22.4 parts 
in 109 per century, and its value at the present time 
is about - 8.6 parts in 109 per century. 

y contains one important contribution that is pro
duced by, or is at least correlated with, the earth's mag
netic field. This contribution accounts for the time de
pendence of y. The remaining contributions are essen
tially constant and amount altogether to 8.9 parts in 
109 per century. One contribution is tidal friction, 
which amounts to - 32.6 parts in 109 per century. 

This leaves + 41.5 as the contribution to y from all 
other sources. At the present time, we do not have the 
information needed to tell us where that contribution 
comes from. It probably arises from some unknown 
mixture of changes in the size of the core, in the 
amount of glaciation, and in the size of the gravita
tional constant. 

THE AUTHOR 

ROBERT R. NEWTON is a 
research physicist who has 
spent most of his career in fun
damental studies of the 
mechanics of flight of missiles, 
earth satellites, and spacecraft, 
and of the motions of the 
earth, moon, and planets. He 
was born in Tennessee and 
earned his B.S. in electrical en
gineering and M .S. in physics 
at the University of Tennessee. 
During World War II, he car
ried out pioneering studies on 
the exterior ballistics of rock
ets and coauthored an author
itative book on the subject. 

, After receiving his Ph.D. in 
physics from Ohio State Uni
versity (1946) , Dr. Newton 

~~:..:.:::::...... joined the Bell Telephone Lab
oratories, but soon returned to academia as professor of physics, 
first at the University of Tennessee (1948-55) and then at Tulane 
University (1955-57) . During that period, he continued his research 
in ballistics. 

Dr. Newton joined APL in 1957, in time to contribute to the 
Laboratory' s space program from its inception. In 1959, when the 
Space Department was formed, Newton became supervisor of the 
Space Research and Analysis Group (later Branch) and served in 
that capacity until 1983. He played a vital leadership role, both tech-

128 

Exciting though it would be, I do not believe that 
we can contribute to the question of a change in the 
gravitational constant by studying the earth's spin. 
There are too many uncertainties in the other sources 
of the earth's spin acceleration. The question of a 
changing gravitational constant will probably be set
tled by the laser ranging of the moon, which has been 
going on for about a decade. The precision of the data 
is such that we can probably settle the question in an
other few decades. 
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nical and administrative, in the early days of the Department. He 
personally led the most difficult theoretical tasks of precisely de
termining the orbits of earth satellites from Doppler measurements 
and, from their orbits, determining the geographic variation of the 
gravitational fine structure of the earth ' s gravitational field. His skill 
in difficult analysis and his insistence on the highest standards of 
rigor and accuracy so improved our knowledge of the earth's gravita
tional field and of other, time-dependent, forces acting on earth satel
lites that it soon became possible to predict satellite orbits with high 
accuracy, an essential requirement for the highly successful Transit 
satellite navigation system. This pioneering work in both analysis 
and computation is documented by over 50 publications by New
ton and his collaborators , most notably W. H. Guier and S. M. 
Yionoulis, in the decade 1958-67. In addition to providing the ba
sis for accurate analysis and prediction of satellite orbits, the work 
was an outstanding contribution to geodesy, improving the knowl
edge of the shape of the earth-the geoid or equipotential surface
by orders of magnitude. 

After the theory and methodology for solving the difficult tech
nical problems of satellite flight had been basically established, New
ton (although continuing to direct and supervise improved analysis 
and computations) turned his personal research attention to basic 
unsolved problems in geophysics. He first used satellite data to de
termine the parameters of the earth's crustal tides; this, in turn, led 
to a study of the secular accelerations of the earth and moon. He 
found that, for the study of long-term variations in the rotation of 
the earth and of the orbital motions of the moon and the planets, 
it was advantageous to use ancient astronomical records, the longer 
time base more than compensating for the lower precision and ac
curacy in the ancient observations. So, in the past 18 years, New-
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ton has become a scholar of ancient astronomy and has pioneered 
in the application of old data in determining the variation in the 
motions of the earth, the moon, and the other planets over millen
nia. This work is documented in eight books and numerous shorter 
publications, culminating in the two-volume work, The Moon's Ac
celeration and Its Physical Origins (1979; 1984). 

In the course of these studies, Newton became a superb scientific 
detective, analyzing both internal and external evidence to deter
mine the probable reliability and accuracy of ancient observations. 
He discovered numerous errors and discrepancies in both observa
tions and analysis and, most notably, was forced to the conclusion 
that Claudius Ptolemy had fabricated all the data he claimed to have 
measured himself and much of the data he attributed to others. That 
shattering conclusion-for Ptolemy was the most distinguished name 
in astronomy prior to Copernicus and his work had been thought 
to be both the summary and epitome of Greek science-was 
thoroughly documented in The Crime o/Claudius Ptolemy (1977), 
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Newton's best known and most controversial work . The smashing 
of an idol was not readily accepted by many historians of science, 
but the rigor and logic of Newton's analysis are prevailing. (Since 
this has been Newton's best selling book, one cannot help wonder
ing how many purchasers thought they were acquiring an ancient 
Egyptian whodunit!) 

Newton was a frequent contributor of articles to the Johns Hop
kins APL Technical Digest and served on the Editorial Board for 
over two years (1982-84). We shall miss his contributions and his 
counsel. 

Dr. Newton stepped down from his management position in 1983 
and retired from the Laboratory at the end of 1984 after seeing 
through the press his most recent publication, The Origins 0/ Ptole
my's Astronomical Tables (1985). We salute his long and exception
ally distinguished career, which has brought great credit to both 
himself and the Laboratory. 
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