
DANIEL BROCKLEBANK 

APL - THE LANGUAGE 

Computer programming languages, once the specialized tools of a few technically trained peo­
p.le, are now fundamental to the education and activities of millions of people in many profes­
SIons, trades, and arts. The most widely known programming languages (Basic, Fortran, Pascal, 
etc.) have a strong commonality of concepts and symbols; as a collection, they determine our soci­
ety's general understanding of what programming languages are like. There are, however, several 
~anguages of g~eat interest and quality that are strikingly different. One such language, which shares 
ItS acronym WIth the Applied Physics Laboratory, is APL (A Programming Language). 

A SHORT HISTORY OF APL 
Over 20 years ago, Kenneth E. Iverson published 

a text with the rather unprepossessing title, A 
Programming Language. I Dr. Iverson was of the 
opinion that neither conventional mathematical nota­
tions nor the emerging Fortran-like programming lan­
guages were conducive to the fluent expression, 
publication, and discussion of algorithms-the many 
alternative ideas and techniques for carrying out com­
putation. His text presented a solution to this nota­
tion dilemma: a new formal language for writing clear, 
concise computer programs. To demonstrate the val­
ue of such a language, he used it to present a variety 
of interesting, nontrivial algorithms (such as those for 
sorting lists of numbers or for "parsing" and analyz­
ing statements written in other programming lan­
guages). 

The APL language, which is used extensively 
throughout the world today, 2 looks only remotely 
like the notation presented in Iverson's seminal text, 
although it does retain many of the fundamental con­
cepts. The original notation could not be entered into 
a computer to be acted upon; it was confined to black­
boards, pencil and paper, and the published literature. 
Only through manual translation into Fortran or some 
other language could Iverson's notation actually 
"come to life" in the real world of computing. 

Through collaboration with others, most notably 
Adin Falkoff, Dr. Iverson designed another APL 3 

that could be used in a practical way on time-shared 
interactive computer systems. By 1970, the APL lan­
guage service was in use by thousands of people, in­
cluding the research and design staff of IBM (whose 
various System 360 computers hosted the APL ser­
vices), the staff of the NASA Goddard Space Flight 
Center, and the financial planners of a number of ma­
jor corporations. The elegant yet practical APL won 
the praise of many of its users, just as it evoked stern 
criticism from the established data processing and aca­
demic computing communities. 

APL received only a modicum of software engineer­
ing support from the principal computer vendors as 

280 

it struggled through the 1970s. Its international con­
tingent of enthusiasts was continuously hampered by 
inefficient machine use, poor availability of suitable 
terminal hardware, and, as always, strong resistance 
to a highly unconventional language. 

At the Applied Physics Laboratory, the APL lan­
guage and its practical use have been ongoing concerns 
of the F. T. McClure Computing Center, whose staff 
has long been convinced of its value. Addressing the 
inefficiency problems, the Computing Center devel­
oped special APL systems software for the IBM 
360/91 computer. That software provided a dramatic 
imp.rovement in the speed of APL language programs, 
achIeved largely by the thorough use of the high-speed 
"vector" processing capabilities of the machine. APL 
at APL was the fastest known implementation of the 
language anywhere in the free world. 

When the Computing Center was upgraded to the 
IBM 3033 processors, the speed of the 360/91 was par­
tially sacrificed, but a new opportunity arose: to build 
an APL system to handle very large applications (us­
ing virtual memory technology and bulk data handling 
techniques). Since its introduction in 1978 this 

4 ' system has been used regularly by hundreds of Lab-
oratory staff members for many purposes. 

Now, in 1984, APL is available for nearly every 
computer in the marketplace. It is also a featured ser­
vice of numerous commercial time-sharing companies 
including one that specializes in up-to-date (hourly) in~ 
ternational financial databases. Most significantly, 
APL is now available for personal computers,5 thus 
bringing it within reach of everyone. The inexorable 
trend toward more powerful, less expensive computers 
is bringing APL out into the world it was designed for: 
the world of learning, intellectual satisfaction, human 
productivity, timely right answers, and smooth integra­
tion of computing and education. 

A BRIEF LOOK AT THE APL LANGUAGE 
APL is international in character. It uses symbols 

instead of words borrowed from natural language (al­
though some of the symbols are indeed derived from 

Johns Hopkins APL Technical Digest 



the Greek alphabet). In this sense, APL is compara­
ble to traditional notations of mathematics. The sym­
bols require a special keyboard (Fig. 1) and display 
device for interacting with the computer. (Today, 
numerous manufacturers offer APL-equipped termi­
nals and personal computers.) 

Much of APL is familiar and reminds us of our fun­
damentallearnings in arithmetic and algebra. In fact, 
APL can be used very effectively as a "laboratory" 
for learning algebra. 6 When being taught French, 
American students often spend hours speaking the lan­
guage in a laboratory. When learning mathematics, 
however, there is usually no such laboratory in which 
to experience and experiment with the concepts. When 
computers are introduced, ostensibly for that purpose, 
the languages used (almost always Basic) have but a 
weak relationship to the substance of the material be­
ing taught. APL offers an attractive, substantive al­
ternative. 

Consider the familiarity of the following APL 
symbols: 

+ Addition 
Subtraction 

x Multiplication 
Division 
Factorial 

< ::; = ~ >:;t. Comparisons 
Logical negation 

/\ Logical AND (intersection) 
V Logical OR (union) 
E Set membership 
I Absolute value 

The Fortran-like languages use unfamiliar symbols 
(such as * for multiply, I for divide, and .L T. for less 
than). Instead of restricting his notation to the sym­
bols available on the keypunch machines of the 1960s, 
Iverson chose symbols that were and are used to teach 
arithmetic and that appear today on nearly every hand­
held calculator. 

APL is rooted in the mathematical concept of func­
tion, and most of its capabilities are implemented as 
functions. The language is rich in interesting identi­
ties involving many combinations of its intrinsic func­
tions, and it is conducive to formal symbolic manip­
ulation and proofs. 

The familiar symbols in the previous list all imply 
the performance of the corresponding familiar func­
tions. Other functions, familiar and otherwise, are 
denoted by well-chosen, easily learned symbols. The 
following are some examples: 

r L Maximum and minimum 
* Power 
® Logarithm 
El Matrix inverse, matrix division 
o Circular, Pythagorean, trigono-

metric 
~ t Ascending and descending "sort" 
~ Transpose about the diagonal 
<P Reverse 

Volume 5, Number 3, 1984 

Figure 1-Typical APL keyboard. 

APL functions are defined upon rectangular arrays 
of data, not just upon individual scalar values. A rec­
tangular array contains data arranged along zero or 
more axes or dimensions, not necessarily all having the 
same length. A simple list of values is a rectangular 
array with only one dimension (a vector); a square ma­
trix is a rectangular array with two equal dimensions. 
A typical financial report often contains tables of num­
bers that can easily be recognized as rectangular ar­
rays. This characteristic results in what may be the 
single most important contribution of the language, 
particularly in light of evolving supercomputer tech­
niques: those who "think in APL" 7 naturally think 
in terms of vector and array processing. 

APL achieves generality through the simplicity and 
uniformity of its rules (as contrasted with achieving 
generality through exhaustive enumeration of features, 
which is typical of computer paraphernalia). As a 
strong source of generality, APL uses the concept of 
an operator, permitting one to build functions that are 
variants of other functions. The I operator, for ex­
ample, can be used to create a summation function 
out of the ordinary addition function. The resultant 
summation function looks like + I and is read as "plus 
over. " We consider this to be highly general because 
it is simple and has many latent possibilities for which 
traditional mathematics (and Fortran) has inconsistent 
ad hoc notations. Consider these variations: 

+ 1 "plus over" Summation 
xl "times over" Product 
rl "max over" Maximum value 
LI "min over" Minimum value 

/\ 1 "and over" True for all 
v i "or over" True for any 

When applied to arrays, these reduction functions may 
be applied along any axis (i.e., down the columns or 
across the rows). 

APL promotes human productivity by thoughtful­
ly automating most irrelevant aspects of the com­
puter's inner workings and by nearly eliminating the 
need for declarative statements (DIMENSION, 
DECLARE, etc.). Unless facing extreme limits, APL 
users do not need to consider how numbers are 
represented internally (as binary, decimal, hexadeci­
mal, Boolean, byte, word, floating-point, etc.), nor 
do they need to announce in advance the sizes, shapes, 
or types of arrays. Furthermore, most APL implemen­
tations provide for convenient interactive testing and 

281 



D. Brocklebank - APL-The Language 

debugging capabilities, entirely in APL terms (no core 
dumps or other machine-related details). 

APL AND EXPRESSIVE DIRECTNESS 
For a broad class of problems, APL provides a very 

high dgreee of expressive directness. By this we mean 
that the language is conducive to the fluent, rapid, and 
clear expression of many algorithms, ideas, and defi­
nitions. To illustrate, let us take a simple concept and 
evolve an APL program to represent it. The concept 
we have chosen is that of a palindrome: a word, verse, 
or sentence that reads the same backward or forward. 
This definition, like many stated in natural language, 
elides many of the detailed points that one would have 
to consider in constructing a program to embody the 
concept. In the sequence of steps below, we start with 
the literal definition and then account for an unstated 
but important assumption. 

Our goal is to construct an APL function named 
P (for palindrome), which takes a list of characters 
of arbitrary length as its right argument (input) and 
determines if that list represents a palindrome. It 
should return the value 1 (true) if the input is a palin­
drome; otherwise it should return the value 0 (false). 
Our first solution is P:A / R = ¢ R. This means "de­
fine a function P whose result is computed by: Is it 
true for all elements that R (the right argument) is 
equal to the reverse of R." This function is easily de­
rived from the English definition, and it directly and 
succinctly expresses the concept of palindrome. 

After the definition 8 is typed into an APL lan­
guage system (thus making it a complete, executable 
computer program), it can be exercised immediately 
by typing the function name followed by a sequence 
of characters to be tested. The computer prints the an­
swer immediately at the left margin: 

o 

o 

o 

P 'APL' 

P 'GLENELG, 9 

P 'ABLE WAS I ERE I SAW ELBA' 

P 'ABLE WAS I ERE I SAW ELBA.' 

P 'A MAN, A PLAN, A CANAL, 
PANAMA.' 

Usually, the last two examples would be accepted 
as palindromes - neither punctuation marks nor 
blanks should be considered detrimental. To account 
for this previously unstated rule, let us develop another 
APL function, named A, which takes a list of charac­
ters and returns that list with all the nonletters 
removed: 

A: (RE'ABCDEFGHIJKLMNOPQRSTUVWXYZ')/ R 

This means "define a function A whose result is com­
puted by: For every R that is a member of the set 
'ABC ... XYZ', keep that R." In this context, the / 

282 

symbol denotes an APL function named' 'compress," 
which uses a list of 1 's and O's (a Boolean vector) as 
its left argument to indicate which elements of its right 
argument are to be kept (1) or deleted (0). 

Now let us test function A, first by itself and then 
in combination with function P: 

A 'A MAN, A PLAN, A CANAL, 
PANAMA.' 

AMANAPLANACANALPANAMA 
P A 'A MAN, A PLAN, A CANAL, 
PANAMA.' 

P A 'HE LIVED AS A DEVIL, EH?' 

Rather than always having to apply function A be­
fore applying function P (as in the above tests), we 
could merge them by incorporating the invocation of 
A as part of a new definition for P: 

P:A/ (A R) = (j) (A R) 

Thus, when tested: 

o 

P 'A MAN, A PLAN, A CANAL, 
PANAMA.' 

P 'MUCH MADNESS IS DIVINEST SENSE 
TO THE DISCERNING EYE, MUCH 
SENSE THE STARKEST MADNESS' 

Alas, we do not know of any clever alterations to 
the function P that would enable it to detect the slant 
allusion to palindromic style in these words from Emily 
Dickinson. 

An important observation about the first palin­
drome function, P:A/ R = ¢ R, is that it is highly 
general. It will work correctly for arguments that are 
bit strings (Boolean data, digital signals, etc.): 

P 1 0 100 1 0 1 

PII1000 
o 
It will work correctly for arguments that are real num­
bers (integral or otherwise): 

P1357531 

P 31 28 31 30 31 
o 

P . 1 .4 99 .4 . 1 

It will also work correctly for any rectangular array 
of data, operating across the rows (unfortunately con­
strained to be of uniform length): 

1 101 

P AAAXBBB lo 

GLENELG 
5966955 
1100011 

Johns Hopkins A PL Technical Digest 



NEW DIRECTIONS FOR APL 
Both the formal definition of APL and its actual 

practice are being stretched and challenged in many 
ways, and they are receiving unprecedented levels of 
attention and support. Some of the major direc­
tions II include 

1. Extension of the language to rectangular arrays 
that may contain other arrays, nested recursive­
ly to achieve arbitrarily complex data structures 
(including structures of considerable interest to 
researchers in artificial intelligence and advanced 
database design); 

2. Extension of the language to the complex num­
ber system (instead of just the real number 
system); 

3. Introduction of new functions, new operators, 
and greater flexibility into the language; 12 

4. Implementations that (a) exploit advances in 
processor performance and memory capacities, 
(b) use sophisticated formal techniques for un­
derstanding optimal execution of APL programs, 
and (c) are available on more computers, both 
large and small; 

5. Appearance of APL in homes and schools; 
6. Extension of the language for use in very large 

software systems for which current APL modu­
larization techniques are not adequate; 

Volume 5, Number 3, 1984 

D. Brocklebank - APL- The Language 

7. Further adoption of APL as a fundamental tool 
for research, design, database systems, teaching, 
and corporate management. 

While the Basics and Fortrans of the world continue 
as popular models of what programming languages 
are, the unconventional APL will persist as a model 
of how much better programming languages could be 
and as an increasingly capable tool-the first choice 
of many. 

REFERENCES and NOTES 
I K. E. Iverson , A Programming Language, John Wiley and Sons, Inc., New 
York (1962) . 

2 Emerging ISO Standard TC97/ SC5 WG6 N28 (1984). 
3 APL Language, IBM Corp. GC26-3847 (1978) . 
40 . Brocklebank and W. T. Renich , "The APLlMVS Interactive Comput­

ing System," in APL Developments in Science and Technology, Fiscal Year 
1980, JHU/ APL OST-8 . 

5 They include such popular machines as the IBM PC, the TRS-80, and the 
family of machines based upon the Motorola 68000 microprocessor. APL 
language products are available from many sources in addition to the ma­
chine vendors. 

6K. E. Iverson, ALGEBRA, An A lgorithmic Treatment, Addison-Wesley 
Publishing Co., Menlo Park , Calif. (1972). 

7K. E. Iverson, "Notation as a Tool of Thought," ACM Turing Award 
Lecture, Commun . ACM 23,444-465 (1980). 

8 The exact technique for entering the function definition varies among 
systems . 

9Glenelg is a small town near APL. 
10 Note that this is not how two-dimensional arrays are entered; the nota­

tion shown is for convenience of exposition only. 
II Most new APL language extensions will soon be operational feat ures of 

F. T. McClure Center software systems. 
12 See, for example, A PL2 Programming: Language Reference, IBM Corp. 

SH20-9227 (1984) . 

283 


