
A REAL-TIME,
INTERACTIVE, MU L TI PLE
COMPUTER SYS EM

R. B. McDowell
P. F. Bohn
N. K. Brown
P. M. Kirk
A. G. Witte

Introduction

THE COMPUTER, IN THE PAST DECADE, has grown
from a device normally employed to manipu­

late numbers to a virtual automaton capable of
mechanizing a very wide variety of processes. As
the variety of applications grew, it became neces­
sary for some applications to tie several computers
together. The connecting together of computers
and the use of increasingly versatile terminals with
these computers seems now to be replacing the
main trend of the 1950's and early 1960's, which
was toward larger computers. Large computers
are still essential, and indeed are often the key to
the interconnection of smaller computers and ter­
minals; but the ability to interconnect is now a
dominant characteristic in the present general ex­
pansion of the versatility of computers.

Probably the earliest concept of interconnected
computers consisted of an analog computer tied to
a digital computer to form a hybrid l computer.
The original rationale for such a system was to
provide a real-time simulation * of a guided mis­
sile, including aerodynamics, a long high-precision
trajectory, and the analog control system. The
digital computer was to handle the complicated

1 For a comprehensive description of hybrid computers and their
applications see the book H ybrid Computation, by Bekey and
Karplus, John Wiley & Sons, New York, 1968.
* Simulation is the analytical or empirical modeling (analogy) of
a theoretical or actual physical system.

2

function generation of the aerodynamics along
with the computation of trajectory, while the ana­
log computer was to handle the rather high data­
rate, inherently analog functions involved in the
control system. The high precision and easy func­
tion generation of the digital computer could then,
in combination with the high speed of the analog
machine, provide a single real-time simulation of
all major aspects of a missile system.

The key problem in combining the two com­
puters was the design of linkage equipment to
match the input-output characteristics of the two
computers, including the control signals necessary
for proper timing of each machine's operations.

The first linkages or interfaces were designed
in 1955 by EPSCO, Inc. for Ramo-Wooldridge
Corp. (later Space Technology Laboratories) and
Convair Astronautics. Key problems soon became
apparent:

1. Too little control was centralized in the
easily programmable digital computer and too
many unsupervised all-hardware analog opera­
tions had to stay in precise voltage and timing
adjustment for long periods of time.

2. The digital computer was too slow to keep
up with the analog computer in many problems,
and in any case had to be dedicated to handling
one program at a time.

APL Techn ical D igest

Using existing technology, generalizing and extending it,
a large real-time, interactive, multiple computer system
has been developed. It is believed that this is the first
time that real-time, interactive, and multiprogramming
features have been successfully combined in a genera/­
purpose computer network. The work done has been
oriented to a major extension of the use of computers for
simulation. However, much of the interface and software
design and implementation are sufficiently generalized to
have many applications in systems other than simulation.

3. The use of vacuum tubes, along with too
little error checking in the hardware and software,
resulted in poor reliability and difficult mainte­
nance. The linkage, for example, required nine
racks and contained several thousand vacuum
tubes.

4. The analog computers required a device
controller and redesigned devices such as auto­
set potentiometers, programmable logic, function
switch control, automatic digital voltmeter addres­
sing, etc. in addition to the mode control and data
transfer operations that were initially incorpo­
rated.

5. A way was required for the operator/ pro­
grammer to communicate on-line with both com­
puters to modify his program or obtain variou
related computer services.

6. Efficient use of the digital computer re­
quired a way for non-real-time jobs to run during
the increments of central processing unit time not
required by the real-time job.

Despite these formidable limitations, both the
Ramo-Wooldridge and Convair systems were used
(albeit laboriously) to successfully solve several
aerospace problems. As a consequence, an appre­
ciation of what might be accomplished by a hy­
brid computer system spread rapidly within the
aerospace industry, culminating in the last severa]

November - December 1971

years with the key role of hybrid computers to
simulate the Apollo guidance, control, aerody­
namics, etc. These massive simulations were used
primarily for analysis, design, and testing before
and during hardware development.

A second, and initially somewhat less conspic­
uous aspect of computer interconnection also be­
gan to be developed during the 1950's. This was
the use of terminal devices located remotely, 2

wherever the user might be located, but tied to a
central digital computer. The impetus for such
terminals grew from three needs:

1. To extend standard computer peripheral
functions beyond the central computation center,
so that printing and program submission would be
more conveniently available.

2. To provide on-line conversational features
to the user, minimizing turnaround time and the
user's dependence on computing center personnel.
Such terminals as typewriters and graphics devices
characterize these terminals.

3. To allow direct data acquisition and/ or pro­
cess control at remote sites to eliminate the need
for separate, dedicated computers or the awkward

2 An excellent text on this technology in terms of the hardware
is the book Telecommunications and the Computer; by James
Martin, Prentice-Hall, Englewood Cliffs, N.J., 1969.

3

and time-consuming manual transfer of data by
way of magnetic or paper tapc or by punched
cards.

The terminals used to meet these needs are of
a wide variety, but fall into two general classifica­
tions: (a) noncomputer or "nonintelligent" de­
vices and (b) computer or "intelligent" devices.
The basic difference between the two types is, of
course, whether or not they have a general (usu­
ally programmable) computation capability. Mini­
computers, t which have recently come into prom­
inence, are finding a major application as the key
clement in the so-called intelligent terminal. Type­
writers are far and away the largest category
within the nonintelligent terminal classification.

Finally, a last and rather recent class of com­
puter interconnection is that of the digital com­
puter network where several computers, often
quite large ones, are connected together to pro­
vide immediate access to a comprehensive data
base. Usually such systems also provide extensive,
though as yet rather specialized, computational
and other data handling services.

All these types of system, however, must find
solutions to the same basic hardware and software
problems associated with the development of the
hybrid computer. At this point, it will be useful
to reorganize and restate these technical problems
as follows:

1. The development of comprehensive software
supervisory services to allocate or manage, as well
as error-check, all hardware and software opera­
tions. IBM terms this the operating system. Others
variously call it the monitor, supervisor, etc.

2. The development of parallel hardware sub­
systems, particularly for input-output (I/ O) chan­
nels to speed up key functions by making them
less dependent on the computer's central process­
ing unit (CPU).

3. The use of solid-state components in place
of vacuum tubes and electromechanical devices to
increase both speed and reliability.

4. The development of sufficiently sophisticated
controllers within the terminal devices or associ­
ated data transmission channels to allow simple
software-generated commands to exercise all hard­
ware features of the terminal regardless of how
complex or specialized. It is important that this

t Minicomputers are a class of small digital computer generally
priced under $25K, using 16-bit words, accompanied by minimal
software.

4

burden be placed on the interface for each device
to be interconnected in order to minimize and
hopefully eliminate hardware or software design
changes to previously connected devices.

5. The devclopment of terminal support soft­
ware sufficient to allow utilization of all hardware
features of each interconnected device. On-line
operator / programmer communication with exe­
cuting programs is a key feature of much of this
type of software.

6. The development, as a part of the basic
supervisory software operating system, of such
features as multiprogramming, real-time services,
and multiprocessingt which automatically adjust
the computer operations to the changing demands
on the overall system. These features are aimed at
maximizing the efficiency of the total system, while
at the same time providing each user with what
appears to be a computer dedicated to his partic­
ular job.

A seventh key technical problem area for inter­
connected systems in general is reliable, long-dis­
tance, high-speed data communications. This,
however, was not a major factor for the systems
discussed in this paper.

Development Context
During 1967 and 1968 the Laboratory identi­

fied four primary areas where simulation require­
ments exceeded existing capabilities:

1. Hybrid computing.
2. Interactive, all-digital simulation coupled

with operating hardware.
3. Missile and radar receiver simulation.
4. Radar system evaluation using realistic com­

puter-generated target scenarios.
Such needs usually had been handled by sepa­

rate, stand-alone, often special-purpose computers.
In order to gain projected economies of scale in
terms of cost per unit work, and to provide a gen­
eralized system capability more adaptable to fu­
ture needs, a decision was made to develop a
series of computer-to-computer links using the
Computing Center's IBM 360/ 91 digital com­
puter as a general-purpose central processor. Rel­
atively specialized functions were minimized and
confined to smaller computers and/ or related in-

:j: Multiprocessing is a system of two or more computers which
share adaptively, according to work load, their resources in mem­
ory, peripherals, etc. This was considered to be beyond the im­
mediately forseeable technology and was, therefore, not attempted
in our design. It is mentioned here for completeness.

APL T echnical Digest

terfaces. § The other computers and specialized
consoles essentially became terminals to the cen­
tral computer. This in turn focused the engineer­
ing effort on the implementation of links and the
support of these links by software in the central
computer.

The 360/ 91 already contained a highly devel­
oped multiprogramming monitor (OS/ MVT) as
well as time-sharing of typewriter and printer /
card-reader terminals. A conversational program­
ming system (CPS) was also in operation, al­
though it did not prove useful for our particular
needs. Two million eight-bit bytes of main core
storage and a large amount of disk storage were
also available. However, there were four items
that had to be developed:

1. A real-time monitor that would allow the
multiprogramming part of the system to continue
to operate in background.

2. An I/ O channel that would permit at least
200K 32-bit words per second to be transferred
simultaneously into and out of the 360/ 91.

3. Terminal support programs to allow inter­
active use of the links that were planned.

4. Appropriate terminal-end interfaces.
Probably the most important work done was in

working out in detail the sequence of operations
necessary to solve these four technical require­
ments. Specifically, we had to decide:

1. How the hardware would communicate with
hardware.

2. How the software would communicate with
software.

3. How the software would communicate with
hardware.
Here we capitalized on the successes and failures
of others, as well as the experienced assistance of
IBM and Electronic Associates, Inc. (EAI). IBM
developed a real-time monitor and a high-speed
I/ O channel adapted to the overall system plan.
EAI likewise provided certain basic hybrid sup­
port software and an interface for the hybrid
computer. Further work was done in-house to de­
sign and implement terminal support programs,
in particular, most of the interactive features, and
a sophisticated terminal-end interface to tie three
digital computers into the 360/ 91 and into each
other.
§ We, however, rejected the use of a smaller computer strictly for
use as a data and/ or control interface between terminal and cen­
tral computer for the following reasons: (a) restricted I/ O data
transfer rate and (b) increased complexity of software and user
programming, especially for real-time operation.

November - December 1971

The intent, then, of our planning was to meet
the four Laboratory needs listed above by inter­
connecting into a single system hybrid computer,
all three types of terminal discussed earlier, and
some aspects of a digital computer network. These
added systems were to have a variety of inter­
active, real-time, and multiprogramming (time­
sharing) capabilities. In addition, none of the
standard capabilities already available on the 360/
91 were to be impaired by the addition of the new
interconnections and supporting software.

System Configuration
Figure 1 shows the overall APL computing

complex. Figure 2 is a hardware block diagram
of the links that are the subject of this paper. The
hybrid computer consists of an EAI Model 680
analog computer connected to the IBM 360/ 91.
The simulation console (SIMCON) allows ex­
ternal hardware to be connected to the 360/ 91 to
operate with all-digital simulations. Missile and
radar receiver simulations are accomplished on
the signal processing simulator (SPS), which may
be tied to the 680 alone or to the complete hy­
brid system via the 680. Finally, the radar system
evaluation capability is implemented by tieing a
portion of the radar through a Univac Model

3 REMOTE DIGITAL
COMPUTERS

APPROXIMATELY 11
REMOTE ENTRY

TERMINALS

1 GRAPHICS TERMINAL
USING STANDARD
LEASED LINES

L IBM 3"60/91

J=----=--
I DIGITAL COMPUTER l ===""

APPROXIMATELY 70 1 DATA CELL
TYPEWRITER-TYPE 5 DISK UNITS

TERMINALS 4 DRUMS
4 MAGNETIC TAPE

UNITS
7 PRINTERS AND CARD

READERS

HYBRID COMPUTER
UNIVAC 1230
UNIVAC 492

HONEYWELL 516
USQ20

SIMULATION CONSOLE

Fig. l-APL computer complex.

5

II IBM 360/91

I
IBM 2870 l­

~ MULTIPLEXER
CHANNEL

2944
DRIVERS/RECEIVERS

IWNG LINE

2703
TRANSMISSION
CONTROL UNIT

I
I

IBM 2909

L
ASYNCHRONOUS :-­
CHANNEl DATA

LONG LINES

rr=~~~~-~ ~==~::~::::~

2930
2930

DRIVERS/RECEIVERS

AT&T
DATAPHONE

APLCONTROL APLCOMPUTER EAI 693
2944 AND FORMAT -- LINKAGE AND :-- DATA AND CONTROL

INTERFACE UNIT CONTROL UNIT

1827
DIGITAL CONTROL

UNIT

IWNGLINE

AT&T
DATAPHONE

I
UNIVAC

1230
EAI680

ANALOG COMPUTER

1892 .I II 2741
PROCESS OPERATOR'S ;I II TYPEWRITER

CONSOLE II II

HONEYWELL I
516

UNIVAC
492

SIGNAL
PROCESSING

SIMULATOR (SPS)

SIMCON LINK TYPEWRITER
LINKS

DIGITAL COMPUTER LINKS HYBRID COMPUTER
LINK

Fig. 2-lnteractive, real·time computer links.

1230 digital computer to the 360/ 91. The 1230
may also be used independently of the radar sys­
tem, providing a general-purpose computer-to­
computer mode. Two other digital computers in
the same facility with the 1230 have also been
tied into the link ; these are a Univac 492 and a
Honeywell DDP-516.

Maior System Characteristics
The following provides a general description of

the performance features and other characteristics
of the four simulation systems. Two of the sys­
tems, the SPS and hybrid, use a single link. The
SIMeON and 1230 computer use one additional
link each.

Signal Processing and Hybrid Computers-The
hybrid and signal processing subsystems are com­
plementary in that much of the signal processing
work requires simulation of a larger physical sys­
tem of which the signal processing is only one
part. The signal processing simulations, so far, do
not require hybrid capability, except as a part of

6

the larger simulation that already involves the
680 analog computer. Therefore, the 680 and the
SPS use a single link to the 360/ 91.

The SPS is designed primarily for signal fre­
quencies up to 1 MHz, and possibly as high as 5
MHz in the future. This frequency range does not
allow use (with presently available technology)
of such elements as potentiometers that could be
automatically controlled. Therefore, there are no
means provided for other than manual setup for
the SPS. Its only connection with the 680 is
through data lines to the 680 analog patch board.

The 680 computer, on the other hand, may be
fully controlled for setup and run control from the
360/ 91. The 680, via the 693 interface, allows
automatic mode control, potentiometer and func­
tion relay setup, component readout, data trans­
fer, etc. This control may be exercised from the
digital portion of a simulation program or from
independent diagnostic programs. Both types of
program may also be run as batch programs or
may allow control, on-line and interactively, by an

A PL T ec hnical D iRest

operator through a typewriter terminal. Of course,
full manual control from the 680 console may also

,be used and can override the digital control.
Since the analog portion of the hybrid system

is remote from the central computer and since the
central digital computer is not dedicated, digital
I/ O equipment and a hybrid system operator's
console must both be located remotely in conjunc­
tion with the analog computer. An IBM 2780 line
printer and card-reader terminal are used for the
I/ O. An IBM 2741 typewriter terminal is used for
the operator's console, along with special support­
ing software.

Simulation Console (SIMCON)-The SIMeON
consists of an IBM 1892 process operator's con­
sole and an IBM 1827 interface. The 1892 con­
trol panel is shown in Fig. 3. It allows interac­
tive control of all-digital programs with the fol­
lowing features:

1. On-line mode control such as initialize, op­
erate, hold, stop, and terminate.

2. Data manipulation such as enter data (from
a keyboard), display data, save data, and step a
parameter value.

3. Special pushbutton functions such as print
parameters, change integration method and incre­
ment size, and test all console functions.

4. Operational and diagnostic alphanumeric
messages to the operator.

The SIMeON has been designed, along with

its supporting software, to provide virtually any
conceivable intervention (except a conversational
language) and that a user might want for hands­
on, on-line control of his job. Special attention has
been given to providing all the capabilities tradi­
tionally available to the analog computer operator.
Output consists of printouts, line printer plots,
x-Y plots, digital and analog strip chart plots, and
dual-trace memory-scope plots.

The 1827 interface provides analog-to-digital
(A/ D) and digital-to-analog (D/ A) converters
to drive the analog plotters. These converters also
make it possible to tie hardware into digital pro­
grams.

The 1230 Link-The 1230 link provides two
modes of operation: (a) computer-to-computer
and (b) radar system to 360/ 91. The computer­
to-computer mode allows the Univac 1230, Uni­
vac 492, or Honeywell 516 computers to transfer
data back and forth to the 360/ 91. Only one of
the three terminal computers may use the link at
a time. The terminal computer is selected from
the 360/ 91 by the user's job program. This pro­
gram continues to operate as the master program,
coordinating the operation of the two computers
through the appropriate interrupts, control lines,
and systems software. The program on the termi­
nal computer is thus a slave operation that may
do computation and other operations solely asso­
ciated with the terminal computer on an independ-

KEYBOARDIiFUNCTION KEYBOARD .. ~ · J \ DIGITAL-TO-ANALOGDISPLAY

~l~~:~i~~::'i'I""'~ ~l~~ CONTROL SWITCHES

~j~' d':; !~!'ftl'al .-i~~i
L-'Y --.) -' -') I. ;a /a !a: R~t:i " .. ~_. <) a a ~

----- ~PARAMETER ~~~~~~~~~--~~-----~-------
ADDRESS
BUTTONS

Fig. 3-Simulation console.

November - December 1971 7

ent or synchronized basis; however, it has no
direct control over the link, the central computer,
or master program. Carrying out job program­
ming with this link requires a higher degree of
awareness of the associated access methods and
related computer hardware characteristics than
for the other two links, where all required digital
programming is executed by the central computer.
The key factors that must be handled by the pro­
grammer are communication between job program
and system software, division of job program
functions between computers, and timing or syn­
chronizing the execution of dependent parts of the
two job programs.

The second mode of operation allows a partly
simulated, partly hardware, radar system to oper­
ate in real time, with simulated targets being gen­
erated by the 360/ 91. The 1230 computer, in
this mode, is a part of the radar system and con­
tains the master program. The 360/ 91 target gen­
eration program is a slave to the 1230 program
in certain respects but also continues control over
the link in synchronism with similar operations
managed from the 1230 end of the link.

As with the hybrid system and the SIMCON,
the radar operation requires an operator's console
to allow the interventions of starting, stopping,
terminating, and changing parameters in the 360/
91 program. Similar intervention on the 1230 may
be carried out at the 1230 console, although such
software must be coded by the job programmer
since there are no standard software support pack­
ages or monitor. To implement typewriter opera­
tion, an acoustically coupled TST 707 portable
typewriter terminal is located next to the 1230
console.

Link Organization
The generalized hardware form for any link is

shown in Fig. 4. While the primary enginee.ring
effort is centered on the interfaces, consideration
must also be given to transmission between inter­
faces if the distance is more than 100 feet. All
three links at APL involve distances of 800 to
1000 feet.

The software required for the links consists, at
a minimum, of access methods to allow applica­
tions programs executed by the central computer
to use the hardware interfaces, and through them,
to use the terminals. Other software, not neces­
sarily concerned with driving the links themselves
but oriented primarily to the applications for

8

which the terminals are to be used, consists of
special monitors, translators, emulators, test and
diagnostic routines, and the terminal support pro­
grams.

LONG LINE

Fig. 4--General purpose computer link organization.

Basic Control Functions-There are four basic
types of control function necessary to any linkage
system: request, initiation, checking, and termina­
tion. Depending on the practical applications for
which the system is designed, there is a variety of
subfunctions associated with each of these four
functions.

The request function can be carried out by
addressing or selecting one device rather than
another. This might be quite passive if the request
is acknowledged only when the addressed device
is idle. A further step can be taken by allowing
such requests to be queued and possibly some
status information sent back to the device initiat­
ing the request. Beyond this, deliberate multiplex­
ing, either through software or hardware, can be
employed.

A more imperative form of request referred to
as an interrupt is also used. An interrupt system,
while it might provide for queuing, requires that
the device being addressed stop its present opera­
tion and begin a new one. Completion of the first
operation is generally suspended temporarily,
rather than being obliterated, and is resumed
when the interrupting operation is completed.

Rather than accepting interrupts on a first­
come-first served basis, it is desirable to establish
priorities for the interrupts. It can easily be seen
that if the last interrupt to arrive is always ac­
cepted, the storage and control for operations
idled by successive interrupts could become un­
manageable. One way out is to inhibit and queue
any interrupts following the first one until that
operation is complete. This is not necessarily satis­
factory; certain following interrupts, such as for
a real-time device, might well require more im-

APL Technical Digest

mediate servicmg. In this case the inhibiting is
carried out only for lower priority interrupts.

The function of initiating a given operation,
once the request phase has been handled, has a
number of parts: (a) clear interfaces and/ or re­
quested device, (b) initialize, and (c) start opera­
tion.

The clear phase is often necessary as a guaran­
tee that any registers and other control circuitry
that could possibly provide erroneous control of
the new operation are not left active.

The initialization phase is carried out by the
requesting device, selecting the mode of operation
of the requested device and supplying the neces­
sary parameters.

The start-operation phase completes the neces­
sary "handshaking" through such events as READ
READY, READ REQUEST, READ, or what­
ever the appropriate control sequence is between
devices, along with the various acknowledgments '
so that data transfer begins.

Certain checking is normally carried out during
data transfer by both hardware and some mini­
mum of error-detecting software. As more check­
ing is done by hardware, less time is required in
overhead (nonjob program software execution
time on the CPU). As more software is employed
in detecting faults, the overhead unavoidably in­
creases since software in general must operate
sequentially, while hardware is generally employed
in parallel. For real-time operations this is a
major consideration.

Finally, data transfer must be properly termi­
nated. This can be accomplished through initiali­
zation parameters, through step-by-step handshak­
ing control, or through control exercised asyn­
chronously by the requesting device.

Data Transfer-The data transfer function,
which is the main object of developing computer­
to-computer links, consists simply of two func­
tions: read and write. The purpose of any link is
to allow I/ O between two devices. The substan­
tive engineering content of handling data transfer
is in terms of coding and formatting the data.

Coding refers to the meaning to be carried by
the data signal pattern. The meaning is predeter­
mined, of course, usually according to some rule,
and the hardware and software are designed ac­
cordingly. In the APL links, the signal pattern is
binary. Numbers are, in most cases, represented
as binary without further coding. Alphabetic and
special characters are represented by EBCDIC

November - December 1971

(Extended Binary Coded Decimal Interchange
Code).

Formatting refers to the order in which the
basic signal patterns are arranged. Such conven­
tions as the following come under this heading:

1. Word length and character length.
2. The order in which particular words or char­

acters are transmitted, particularly where control­
type words are included.

3. The use of blocks or other groupings of
words in batches.

The key consideration involved in the APL
links was how to reliably convert the codes and
formats of dissimilar devices at minimum cost.
This required some tradeoffs between software
and hardware, as well as providing several modes
of operation for a link to accommodate a variety
of devices.

Signal Transmission-Signal transmission is
concerned with the transmission medium, modu­
lation and demodulation, transmitters and re­
ceivers, noise, bandwidth, signal shaping and
regeneration, repeaters, level conversion, and
deskewing.

The APL system uses RG-62 coaxial cable for
the 1230 and hybrid links, partly suspended above
ground and partly buried in metal conduits
bundled in groups of 24 cables with an outside
sheathing of PVC. The data words are trans­
mitted in parallel, 30 bits parallel for the 1230
link, and 16 bits parallel for the hybrid link.
Cable lengths are 1000 feet.

IBM 2930 line driver/ receiver and regenera­
tion equipment is used at the remote ends of the
1230 and hybrid links. Voltage levels are 0 to + 3
volts. Rise times after regeneration are maintained
at IOns. Before regeneration, rise times are
allowed to stretch up to 150 ns. The 1230 and
hybrid links connect to the 360/ 91 memory bus
via the 2909, which has the same type of drivers,
receivers, and regeneration circuitry as the 2930's.

The SIMCON uses 22 A WG twisted pair cable,
for 16-bit parallel data transfer. The cable length
is 1000 feet, and two IBM 2944 driver-receiver­
regenerator units, one at either end, are used.

Data rates are about 200K 30-bit words per
second for the 1230 link, 200K 16-bit words per
second maximum for the hybrid link, and 167K
16-bit words per second maximum for the SIM­
CON link. These are the maximum rates at which
the interfaces can operate. The maximum rate of
the 360 memory bus is 2M bytes per second be-

9

tween CPU and 2909 and CPU and the 2870
multiplexer. Cable delays and software overhead
reduce these maximum rates to about 167K words
for the 1230 link and lOOK words for the SIM­
CON. The hybrid link is limited by the A/ D con­
verter and software to about lOOK words per
second.

Noise is minimized by outside shields around
cable bundles and the use of 4/ 0 fine-stranded
welding cable as a ground bus running between
buildings, terminating at each end in the equip­
ment complexes. The finely stranded 4/ 0 cable is
felt to be a key to minimizing both AC and DC

noise, particularly since substantial power ground
levels as well as a myriad of AC sources from
computers to radars can produce large voltage
differences. Noise voltages in the transmission
system are maintained under 10m V from DC to
10 MHz.

Central Computer Interfaces-As described
earlier, computer links generally require interfaces
at both ends. Those interfaces at the central com­
puter end are channels into and out of the com­
puter. There are three basic kinds of channel that
provide access to IBM 360 computers as shown
in Fig. 5.

1. Multiplexer Channels (Model 2870).
2. Selector Channels (Model 2860).
3. Asynchronous Data Channel (Model 2909).

The first two types of channel are standard. The
last one (2909) is provided subject to customer
specification.

These channels are representative of two basic
methods of providing access to computers. The
multiplexer channel allows connection of many
peripheral devices to the main computer memory

IBM 2909
ASYNCHRONOUS
DATA CHANNEL

IBM 2860
I(IBM 360/91J: SELECTOR

CHANNEL

IBM 2870
MULTIPLEXER

CHANNEL

SELECTOR
SUBCHANNELS_~

Fig. 5--APL's IBM 360/91 channel configuration.

by switching from device to device, giving each
a portion of the time available.

The selector channel in contrast is, in principle,
dedicated to a single peripheral device or semi­
dedicated by being able to address a few devices,
but only service one at a time until each succes­
sive one is finished. Also, rather than using the
time left after the needs of the CPU are met, it
takes priority in accessing the memory, maintain­
ing control until its data transfer is complete. In
many machines, this sort of operation, and varia­
tions on it, is called by its more or less generic
name of direct memory access.

The asynchronous data channel is a combina­
tion of features from the multiplexer and direct
memory access types of channel. It has all the
features of the selector channel, but can also
multiplex its own multiple subchannels according
to its own priorities. It is, therefore, able to pro­
vide maximum speed transfers of data to and

TABLE 1 COMPARISON OF THREE TYPES OF IBM INPUT-OUTPUT CHANNEL

2870
2909 Selector 2860

Main Channel Subchannel

Maximum Data Rate 2 Million Bytes / s 110 K Bytes/s 180 K Bytes/s 1.3 Million Bytes/s

Type of Data Transfer Multiplex Multiplex/Burst Burst Burst

Maximum Distance to
110 Device 1000 200 200 200

(ft)

Data Path Size to 1,2,4, or 8 Bytes 1 Byte 1 Byte 1 Byte
110 Device

Channel- Channel- Channel- Channel-
Hardware Hierarchy Subchannel- Control Unit- Control Unit- Control Unit-

Device Device Device Device

10 APL Technical Digest

from the CPU to several external systems up to
an aggregate rate that equals the main memory
input/ output speed and forces all other computer
operations to be suspended as necessary. This
channel is, consequently, the most suitable for
handling real-time I/ O.

Table 1 gives a comparison of the character­
istics of the three channels. The IBM 2870 multi­
plexer channel has a maximum data rate of 11 OK
8-bit bytes per second (b/ s) and up to four selec­
tor subchannels may be added, with each sub­
channel having a data rate of 180K b / s. A maxi­
mum of eight control units and a theoretical
maximum of 196 I/ O devices may be connected
to the IBM 2870 main multiplexer channel. In
addition to this, up to eight control units and 16
I/ O devices may be connected to each selector
subchannel on the 2870.

As the name implies, the multiplexer channel
uses time division multiplexing to interleave data
to and from control units. However, a burst mode
of data transfer between the channel and control
unit is also possible using the selector subchannels
which are similar to selector channels in that they
are dedicated and relatively high speed. In this
mode a control unit locks out all other control
units on the multiplexer until the burst of data is
complete.

The mM 2860 selector channel operates only
in the burst mode and has a maximum data rate
of 1.3 million b/ s. Because of its speed, drums,
disks, and sometimes magnetic tape units are gen­
erally connected to a selector channel. A theore­
tical maximum of eight control units and 256 I/ O
devices may be attached to a selector channel.
It should be pointed out, though, that while 256
is the maximum number of devices that can be
uniquely addressed by the selector channel, the
physical number of I/ O devices is usually much
less than 256, after being dedicated to one or two
similar units such as drums or an extended core
memory. Also, the 2860 does not truly multiplex
or interleave data transfers between the various
devices. It selects a device and then proceeds to
completely service that device to the exclusion of
the others.

The mM 2909 asynchronous data channel
(ADC), while not associated with standard sys­
tem 360 I/ O channels, is of particular interest
in the simulation environment at APL. It is able,
among other things, to handle both real-time de-

November - December 1971

vices under the real-time monitor and other de­
vices under OS/ MVT simultaneously. The ADC
is composed of a main channel and up to 32 sub­
channels that may contain some of all the func­
tions otherwise carried out by a terminal-end or
controller interface. The subchannels can be de­
signed by IBM for special applications. Three
types of subchannel are currently installed in the
2909 at APL (see Fig. 6).

IBM 2909
ASYNCHRONOUS
DATA CHANNEL

32-BIT HDGP SIC 1000 I IBM 2930
WITH EXTENDED FEET
DRIVERS AND INTERFACE II

II RECEIVERS
CONVERTER

32-BIT HDGP SIC 1000
IBM 2930

WITH EXTENDED FEET
INTERFACE

DRIVERS AND
II CONVERTER

RECEIVERS

16-BIT HDGP SIC II
WITH EXTENDED
DRIVERS AND 1000 jl IBM 2930

RECEIVERS FEET INTERFACE

PRIORITY INTERRUPT ~ CONVERTER

SUBCHANNEL

Fig. 6--APL's IBM 2909 subchannel configuration.

Half Duplex General-Purpose Subchannel
(HDGP). The HDGP subchannels, which allow
data transfer in both directions, but not at the
same time, were specified by APL for data links
requiring high-speed data transfers, generally from
real-time drivers, when each data word consists of
16 or 32 bits. Two key features marked the
HDGP subchannel design: (a) maximum data
rate up to the 360/ 91 memory bus rate of 2.0
million 8-bit bytes and (b) drivers and receivers
built-in which are capable of sending and receiv­
ing such signals over 2000 feet of coaxial cable
with virtually zero probability that the usual am­
bient noise will cause errors.

In addition to these key features, a variety of
control lines, some of which are optional, was
provided. This allows more sophisticated error
detection and error correction with software or
special hardware. It also allows external devices
to be multiplexed, or for the devices to interrupt

11

on a priority basis, and it allows for off-line
checkout of the 2909 with one subchannel driv­
ing another for a so-called loop test.

IBM 2909 Priority Interrupt Subchannel. The
IBM 2909 asynchronous data channel at APL
also contains a 16-level priority interrupt sub­
channel that allows 16, 32, 48, or 64 levels of
priority interrupts. Each priority interrupt is
uniquely identified by an address in the I/ O old
program status word during an I/ O interrupt.
Priority interrupt levels may be enabled, disabled,
or reset by issuing commands to the subchannel
priority mask register from the 360/ 91. Priority
interrupt levels of lower priority are inhibited
during the processing of a higher level priority
interrupt. Software support packages are required
before any use is made of the subchannel.

IBM 2909 High-Resolution Timer Subchannel.
The high-resolution timer subchannel is a timing
device that may be used as an interval timer or
an elapsed time counter. The subchannel contains
a 32-bit register that may be loaded with a count.
The count is then decremented at the rate of the
frequency generator in the subchannel. The decre­
menting rate may be from 1 to 127 /-ts / bit of the
32-bit register.

The high-resolution timer subchannel is con­
trolled by the read direct and write direct instruc­
tion of System 360. An external interrupt is used
to signal the 360/ 91 that a time interval has
elapsed. Because of this, special software pack­
ages are needed on System 360 in order to utilize
the high-resolution timer subchannel.

Terminal-End Interfaces-The immediately pre­
ceding material has provided the key character­
istics of the central-computer-end interfaces. This
section will describe the terminal-end interfaces.
The computer linkage and control unit (CLCU)
and the control and format unit (CFU) are en­
tirely APL-designed. The CLCU will be described
in some detail. The CFU is similar to the CLCU
and will, therefore, be described more generally.
The EAI 693 data and control interface was
partly built to APL specification and will be de­
scribed with minimum discussion of the standard
characteristics. The IBM 1827 is a completely
standard unit, although APL did provide a black­
box modification to allow attachment to the 360/
91, for which computer the 1827 is not a stand­
ard connection. Nevertheless, the 1827 will be
assumed standard for the purpose of this paper
and described only generally.

12

Computer Linkage and Control Unit (CLCU).
The CLCU, as shown in Fig. 7, is the primary
interface connecting the Univac 1230, Univac
492, and the Honeywell 516 to the 360/ 91. For
the 516 it operates in conjunction with the CPU
which makes the 516 conform to Univac char­
acteristics on which the CLCU operation is based.
The CFU also allows a mode of operation where
the 516 is made to conform to IBM characteristics
allowing it to replace the 360/ 91, where the 516
and 1230 are to be interconnected with each
other.

The CLCU allows, then, both Univac com­
puters (one at a time) or the 516 to connect to
the 360/ 91. It also allows the 516 to connect to
the 1230. And it further allows the radar syn­
chronizer associated with the 1230 to be con­
nected in either a 1230-to-91 mode or a 1230-to-
516 mode.

RADAR
SYNCHRONIZER 492 1230

,-- - J---
492

DRIVER/
RECEIVER

SELF TEST
SIMULATOR AND ~

DISPLAYS t

*MUL TIPLEXER

360/91
DRIVER/RECEIVER

516 (CFU)

360/91
•

L __ ___________ _ _ ~

Fig. 7-Block diagram of computer linkage and con­
trol unit (CLCU).

APL T echnical D igest

In its present configuration, the CLCU is dedi­
cated to one mode at a time, switching to a new
mode only after the current user-computers indi­
cate that they have terminated all communication.
Provision has been made, however, to convert the
CLCU to mode time-sharing under control of a
suitable monitor on any of the terminal-end com­
puters. The selection of modes at present may be
made manually on the CLCU maintenance panel
or by instructions sent by anyone of the com­
puters on a first-come-first-served basis.

The philosophy of the CLCU control is that
any computer may act as a "master" at any time
and request that another computer be "slaved" to
it. Once the communication link is established,
the master-slave relationship disappears for the
CLCU, since it will accept further commands
from either computer. Since the other computers
in the overall system may not gain control of the
CLCU once this communication link has been
established, it is essential that a CLEAR CLCU
instruction be given by one of the active com­
puters when they are terminating their use of the
CLCU.

The following specific functions are performed
by the CLCU in order to carry out the role de­
scribed above:

1. Provides full-duplex data transfer capability
between Univac-type computers and the half-du­
plex 32-bit subchannels of tpe IBM 2909.

2. Satisfies the demand-response interface of
all computers so that each computer feels it is in
complete control of the data transfer.

3. Converts logic levels of the transmitting
computer's I/ O interface to levels acceptable to
the receiving computer's I/ O channel.

4. Provides switching capability under program
control to allow a "master" computer to commun­
icate with anyone of a number of "slave" com­
puters.

5. Transfers data at the maximum rate allowed
between two computers (limited to the speed of ·
the slower computer).

6. Provides a self-test mode to perform check­
out of the computer link with either the 360/ 91
or a Univac-type computer.

This requires that the CLCU be divided into
functional areas as shown in Fig. 7. Each com­
puter has a level shifting driver/ receiver package
that transforms the logical voltage levels used by
the individual computer I/ O channel to the logic

November - December 1971

TABLE 2
CHARACTERISTICS OF TERMINAL COMPUTERS

USING CLCU

Voltage (volts) I / O Specs.
Word Speed

Logical Logical Length (Max)
Computer 0 1 (bits) (words/s)

Univac 1230 -3 0 30 167 K

Univac 492 -3 0 30 64K

Honeywell
DDP-516 0 +3 16 1000K

(CFU)

levels used internally to the CLCU (see Table 2).
Two multiplexers determine which computers will
access the data buffers and control interface
blocks which are the heart of the CLCU.

Control lines used by the three Univac or
"1230 side" computers are identical as follows:

1. Input Data Request (IDR). Control line
voltage raised by the peripheral device (CLCU)
to indicate that data are ready to be input by the
computer.

2. Output Data Request (ODR). Control line
voltage raised by the peripheral device (CLCU)
to indicate that it is prepared to accept data from
the computer.

3. Input Acknowledge (lA). Control line volt­
age raised by the computer in response to an IDR
to indicate to the peripheral device that the input
data lines have been sampled.

4. Output Acknowledge (OA). Control line
voltage raised by the computer in response to an
ODR to indicate that data is on its output bus
ready to be sampled.

5. External Function (EF). Control line volt­
age raised by computer to indicate to peripheral
device that data is on the output bus. An EF
differs from an OA in that no response or re­
quest by the device is necessary.

6. Interrupt (INT). Control line voltage gen­
erated by the peripheral device to cause a jump
from the instruction being executed in one pro­
gram to a given instruction in another program.

The control interface handles the control lines
from the IBM and Univac "sides" in order to sat­
isfy both computers. Figure 8 shows a timing dia­
gram for the transfer of two data words from the
Univac side to the mM side. The CLCU responds
to the mM Read Ready by raising an Output
Data Request (ODR). When the Univac-side

13

computer returns a data word and an Output
Acknowledge (OA), the CLCU sends a Demand
to the IBM side. A WC = 011 , EORIt sequence
satisfies the IBM computer after all data are
transferred. This sequence is typical for transfers
in the opposite direction using the IDR, lA, and
write ready control lines.

READ
SELECT

READ
READY

ODR

DATA K::::::=!r!J

OA ====:y=..I t.====::::!.l '-======:::11

DEMAND II:::::::==:::::::::::J

EOR ~==================~

Fig. 8--Typical timing diagram of control lines for data
transfer from the IBM side to the Univac side of the
CLCU. Actual times depend on which computers are
being used (see Table 2).

The CLCU maintains a status register (see
Fig. 9) in the control interface that contains among
other information:

1. Multiplexer setting on 1230-side (which
computer is presently supplying data and control
lines) .

2. Multiplexer setting on 360/ 91-side.
3. Whether or not the radar synchronizer is

controlling timing (SIMF AR or general purpose).
The contents of this register are manipulated

by instructions from the computers. The Univac
computers issue specific external functions and the
360/ 91 uses its device address bits to change the
register or read its contents. Since the multiplexers

II Word Count Equals Zero (WC = D)-This line is raised by the
sub channel when the byte count for the current operation (read or
write) has decremented to zero. (Note: Ready also comes high
with WC =0.)
It End of Record (EOR)-This line is raised by the I/O device to
signal the channel that no more data will be input or output
(depending on the current I / O operation).

14

RADAR SYNCHRONIZER
IN OR OUT

0= GENERAL PURPOSE
1 = RADAR SIMULATION

COMMUNICATION TYPE
0= GENERAL PURPOSE

DATA TRANSFER
1 = SPECIAL RADAR

SIMULATION DATA
TRANSFER

IBM TYPE COMPUTER
STATUS INFORMATION

o = IBM 360191 ACTIVE
1 = DDP 516 ACTIVE

UNIVAC TYPE COMPUTER
STATUS INFORMATION

00= IDLE
01 = UNIVAC 1230

ACTIVE
10 = UNIVAC 492

ACTIVE
11 = DDP 516 ACTIVE

Fig. 9--CLCU status word format.

that select the two communicating computers are
driven from the status register, changing the reg­
ister contents has the effect of changing the CLCU
mode. A computer may request the CLCU to
send its status word (by the proper EF or OA)
in order to determine if the CLCU is available.
The status word is always returned through the
requesting computer's driver/ receiver package
even if the CLCU is being used by two other
machines.

An important diagnostic feature of the CLCU
is its ability to simulate computers. In a simulate
mode, the control lines on one side of the control
interface may be manipulated from the CLCU
panel (Fig. 7). Single cycling (stepping under
manual control) or automatic operation is pos­
sible. For example, if a problem occurs in the
360/ 91-to-492 link, the panel may be used to
simulate the 360/ 91 while the 492 is run nor­
mally and the operation (including data bits and
control lines) is checked. Then the 492 (actually
a general "Univac" computer) is simulated while
the 360/ 91 runs. In this way the source of the
problem may be isolated. Simulation of two com­
puters (on both sides) is also permitted as a
check on the circuitry within the CLCU. This
allows quite complete off-line checking of the
CLCU.

Control and Format Unit (CFU). The control
and format unit (CFU) is similar to the CLCU.
As with the CLCU, its basic function is to match
up the different I/ O control and data between
two or more computers. Specifically, the CFU
matches the I / O characteristics of the Honeywell

APL Technical Digest

DDP-516 to those of the 360/ 91 (2909) or the
1230. This allows the 516 to communicate with
the 360/ 91 through the CLCU by appearing as a
1230 or to communicate with any Univac ma­
chine through the CLCU by appearing as a 360/
91. This also allows the 516 to communicate
(with slight modification) with any of the Univac
peripherals directly.

The specific functions performed by the CFU
are:

1. Transforms the 516 direct memory access
(DMA) high-speed I/ O channel voltage levels,
pulse shapes, etc. to IBM and Univac require­
ments.

2. Performs packing and unpacking of 16-bit
words and 32-bit words respectively.

3. Satisfies the channel-response (control lines)
function between the DMA and the I / O channels
of the other computers.

4. Provides data transfer between the 516 and
the other computers.

5. Provides for self-test.
6. Provides switching under program control

to allow communication to anyone of the con­
nected computers via the CLCU.

The CFU is connected to four DMA channels
of the DDP-516, any of which may be used for
communications with other computers. If a full
duplex mode of data transfer is needed, two DMA
channels are used, with one dedicated for input
and one for output. Since the DDP-516 is a 16-
bit word machine, the CPU must pack and un­
pack data words sent to the 360/ 91 (32-bit data
word) and to the Univac computers (30-bit data
word). In the case where the 516 is communicat­
ing with the 360/ 91, the reformatting is straight­
forward. Between the DDP-516 and the Univac
computers, the most significant bit of the DDP-
516 word is not used, and two DDP-516 data
words form one 30-bit Univac data word.

Hybrid Computer Interface (693). The 693
hybrid computer interface is the controlling device
in this computer link just as the CLCU was the
controlling device in the all-digital link. The 693
was designed for a minimum number of separate
control lines, however, requiring that many con­
trol functions be sent as commands on the data
lines. One of the more obvious problems, then, is
for the 693 to distinguish between command and
data words. For example, if one wishes to issue a
command to the 680 analog computer, certain
control lines must be set; then the first two 16-bit

November - December 1971

words that follow arc interpreted as commands
rather than data. (If these control lines arc not
set, data are transferred to the A/ D or from the
D/ A converters according to the 693 mode al­
ready set up by previous control signals. These
control signals are generated by software on the
360/ 91.) The first 16-bit word represents an in­
struction to the 693 and the second "data" word
elaborates the meaning of the instruction.

Finally, a status word and a fault word arc as­
sociated with the 693 coupler; these words may be
input to the 360/ 91 to enable the digital program
to interrogate the condition of the 693-680 units.
This is of key importance since the 693 and the
680 analog computer are complex devices, but
lack the inherent ability to diagnose their own
faults while in on-line operation. Consequently,
programs on the 360/ 91 are used to interpret and
act on these hardware conditions.

Simulation Console Interface (1827). The
last interface to be mentioned is the SIMCON
interface. The main area of concern is the use of
the IBM 1827-1892 components as a somewhat
special-purpose console. The configuration pro­
vides two interesting capabilities-interactive con­
trol of an all-digital simulation running on the
360/ 91 and both analog and digital I/ O inter­
faces to provide interaction between the digital
simulation and actual hardware. These hardware
capabilities are part of the standard IBM con­
figuration. However, to take advantage of them
required a major development of software at APL.

Software
Key Software Design Considerations-Provid­

ing the many capabilities represented by the soft­
ware is a matter of developing the appropriate
program and the necessary communication by that
program with hardware and other software. It is
the intercommunications features and associated
error handling and protection that distinguishes
this work from applications programming. In this
case, both the hardware system and the existing
software system must be understood in detail, while
for applications programming only a relatively few
hard and fast rules imposed by the compiler and/
or monitor need be followed. The designers of the
System 360 decided that it would be more feasible
to manage a multiprogramming computer system
without certain aspects of system operation being
solely the province of the control program or

15

supervisor itself. Most prominent among these are
program switching and access to I / O devices.
Problem programs must not be allowed direct
access to data on peripheral storage units because
of the danger of inadvertent modification of data
belonging to other programs or to the monitor.
The problem runs, therefore, in "problem state"
and any attempt to execute four privileged I/ O
instructions directly results in an abnormal termi­
nation of the problem by the supervisor (moni­
tor).

It was decided to incorporate our new devices
into the present 360 supervisor. The problem pro­
grams would then request access to these devices
through the supervisor just as for the more stand­
ard devices such as line printers, disks, etc. The
360 monitor or operating system is made up of a
number of separate though intercommunicating
programs. One of these is the I/ O supervisor
(lOS) and is written in assembly language. The
lOS is written in such a way as to allow, without
modification of existing code, additional subpro­
grams to describe those features of a new device

required by the I/ O supervisor to identify it and
to issue the four privileged I/ O commands to it.
These subprograms in turn build up appropriate
tables known as control blocks which contain the
actual data used by the lOS during an I/ O opera­
tion. The lOS, when appropriately called by a
job program through the system supervisor, ex­
ecutes the new su bprograms to build the control
block tables and then commences I/ O to the de­
vice.

The question is how the problem program
should make the appropriate I/ O request to the
system supervisor. In our application this is done
by an instruction at assembly language level called
a supervisory call to the lOS, the argument of
which contains information on the I/ O operation
to be carried out and the identification of the I / O
device. Additional information was often also con­
veyed through control blocks. These control
blocks or tables had to be generated or built by
the problem programmer at the assembly lang­
uage level or by a high-level language compiler
or by calls to special I/ O routines. Because the

I

SIMCON*

TVPER*

27411707
INTERACTIVE ACM T 2909 ACM

2909 ACM RTAM
(PART OF RTM) ~ (2909 ACM _ I 693ACM)

16

(SUPERVISOR! -------- OS/MVT __________ REAL-TIME
ACCESS METHOD) MONITOR

TRANSLATORS
TESTS AND

DIAGNOSTICS
* SPECIALIZED TERMINAL

SUPPORT PROGRAM

1230
RADAR TEST

HYBRID I/O
TEST

360-TO-CLCU
MASTER I

SLAVE

RTM TEST
PROGRAMS

Fig. IO-Link system software additions to OS /MVT.

APL T echnical Digest

system control program has to be so extremely
defensive about problem programming errors,
providing interactive access methods for the peri­
pherals is but half the battle. The interactive user
of the simulation-oriented peripherals will invari­
ably arrive at a state of program readiness where
he must run the program, linked-to equipment,
and try the various options on-line so as to test
sections of programming that cannot be tested in
any other way. Unless the software specialist has
provided for CPU error recovery, the first pro­
gram bug detected by the supervisor will likely
end the test via abnormal termination of the pro­
gram. Thus, the process of final debugging be­
comes an extremely slow and frustrating one.

The software to support the links and associ-
"ated terminals is of six types:

1. Access methods.
2. Monitors.
3. Terminal support programs.
4. Test and diagnostic programs.
5. Translators.
6. Emulators.
The software was required to operate in a pre­

existing environment with the following character­
istics:

1. Time shared with a variable number of jobs.
2. Batch terminals.
3. Conversational terminals.
4. Graphics terminals.
The new software was to add the following

basic capabilities:
1. Real time.
2. Control and data transfer over the new com­

puter-to-computer links.
3. External priority interrupts.
4. Comprehensive link error routines and di­

agnostics.
5. Substantial operator interaction with the job

program from the terminal end of the new links.
The mM 360/ 91 normally operates in a time­

sharing mode under its operating system with
multiprogramming for a variable number of tasks
(OS/ MVT). This system allows a variety of jobs
to be under execution at the same time from batch
card readers, both local and remote, from type­
writer terminals, and from graphics light pen ter­
minals.

In adding the computer-to-computer links, no
modification was allowed to be made to MVT or
other OS software such as the remote job entry
(RJE) that services all terminals, or the conver-

November - December 1971

sational programming system (CPS) that services
the typewriter terminals, or the graphics process­
ing system (GPS) that services the light pen ter­
minals, the various translators, and service rou­
tines.

Figure lOis a block diagram showing the soft­
ware that has been developed to service the com­
puter-to-computer links. In effect, most of this
software becomes an expansion of the operating
system. With this quantity of software and the
fact that most job programs using the link facili­
ties are on the order of lOOK bytes, core space
becomes an important consideration. Figure 11
shows the memory core allocations for all major
systems.

~~::=~~=_,:T~OTAL: 4096 K BYTES
800K

CONVERSATIONAL
PROGRAMMING

BATCH INTERACTIVE SYSTEM (CPS)
WORK PROGRAMS AND TIME

SHARING
OPTION (TSO)

146K 620 K

REMOTE JOB SYSTEM
ENTRY (RJE) SUPERVISOR

Fig. ll-Core allocations.

Access Methods-The key type of program
necessary for any computer-to-computer link (or
any peripheral hardware) is the access method
(ACM). This function may be carried out in any
number of configurations; it may be a separate
package, part of the monitor, or part of an al­
ready-existing access method, or it may be left to
the job programmer to include in his program.
The access method is the software counterpart
of the hardware controller or interface. It causes
I/ O to take place as required by applications pro­
grams, handles and generates hardware codes, and
contains error-handling features to protect the in­
tegrity of the overall system from programmer
errors, terminal operator errors, and terminal sub­
system hardware errors. Access methods must,
therefore, handle the following functions:

Ini tialization/ termination
Input/ output

Read
Write
Control

Error handling
Checks
Recovery
Messages

17

User exits
User initialization
User I/ O format conversion
User postprocessing

The initialization/ termination functions are
generally a single routine that interprets and drives
the four basic control functions of the hardware
interface, as already described.

The data transfer operation of the interface is
driven and controlled in accord with the initializa­
tion routine parameters by an I/ O routine. This
routine handles most of the so-called handshaking
and I/ O data format operations and also operates
in conjunction with an on-line error checking
routine.

The error checking routine interprets any hard­
ware flags, while continually checking for logical
software problems and data format errors. Some
capability is also programmed to provide limited
error recovery. The error routine can also provide
for a halt or wait of the job program, with appro­
priate messages and user intervention routines to
allow operator-initiated recovery procedures to be
used.

It is essential in real-time operations that the
ACM be fast since it must operate in series with
the real-time hardware and job program. There­
fore , the basic program must be simple, providing
only a minimum of error checking and recovery.

In general, there will be one ACM program for
each interface and terminal making up a link. The
functional organization of this software and hard­
ware can be conveniently viewed as a nested ar­
rangement. For instance, the simulation console
system requires the console access method
(POCACM), which communicates through the
digital control unit access method (DCUACM),
which communicates with the DCU itself, which
then communicates with the console. Figure 12
shows this diagramatically. The other links follow
the same pattern, and in fact this view can be
extended to cover the various interfaces and re­
lated access methods making up the standard
360/ 91 system.

This same philosophy is also valid for the links
having digital computers at either end. However,
some modification of the concept, compared to
nonstored program interfaces and terminals, is
necessary.

Where two digital computers are concerned,
there is a need for a set of access methods on
both computers that can send data and control

18

Fig. 12-Nesting of access methods and link hard·
ware.

signals through all interface units. In order to min­
imize these access requirements, two things have
been done: (a) the computer linkage and control
unit (CLCU) interface has been made sufficiently
intelligent that it can accept instructions for a
variety of options that can then be carried out by
hardware and (b) the two digital computers are
not treated as hardware terminals with fixed cap­
abilities, but are expected to have programs that
intercept control and data signals, using these
basic functions in whatever way the programmer
wishes and the computer hardware allows.

With this approach the requirement for a sep­
arate set of access methods for communicating
with the CLCU and the digital computers is elim­
inated, the necessary programming being contained
in the master and slave programs or in actual
applications (user) programs. This requires the
360/ 91 programs to communicate through 91
system access methods to the CLCU, but no fur­
ther. Likewise, 1230 programs communicate only
as far as the CLCU. For all practical purposes
the CLCU looks to the 91 like a 360 terminal
and to the 1230 like a 1230 peripheral. To make
this programming relatively independent of any
specific knowledge by the user of the interfaces,
FORTRAN callable routines are available on the
91. On the Univac computers and the 516, how­
ever, the user must still, at this point, deal in as­
sembly or absolute code with the interfaces, al­
though similar interface support packages could be
written.

Monitors-Two monitors are required for the
overall system, the operating system with multi­
programming for a variable number of tasks (OS/
MVT) and the real-time monitor (RTM).

The basic need for any monitor is two-fold:
(a) to provide programs that make available to
the job programmer the hardware capabilities of a
computer without requiring him to understand the
architecture, hardware codes, and possibly even
the circuit design of the hardware and (b) to
manage efficiently the communications or inter-

APL T echn ical D ige st

actions of the programs making up the monitor
so that the job programmer does not need to
understand the operation of these programs.

In addition to these basic needs, a considerable
amount of effort is usually put into hardware and
software error-checking routines and diagnostics.
This serves several purposes:

1. To protect the monitor and hardware from
improper use by job programmers.

2. To protect job programs from each other,
which is particularly important in a time-sharing
system.

3. To assist job programmers in debugging.
4. To provide the computer operator with

knowledge of malfunctions.
OS/ MVT. The operating system with multi­

ple, variable number of tasks provides the basic
time-sharing or multiprogramming capability as­
sociated with the 360/ 91. It is the 360's monitor.
It also manages all of the basic hardware facilities
of the 360/ 91 such as storage, I/ O and the as­
sociated access methods, accounting, messages to
and from the operator, and oversees the operation
of such associated software as translators or com­
pilers and service programs such as link edit, sort/
merge, data set management, etc. Such sophisti­
cated monitors are major topics in themselves.
Since APL has not modified the OS/ MVT as a
part of the computer program being described, no
further discussion will be made here.

RTM. The real-time monitor (RTM) adds
to OS the capability of guaranteeing that a real­
time job is executed and the associated I/ O carried
out at given points in time. As necessary, RTM
progressively dedicates the CPU and other facili­
ties to maintain real-time operation. In addition,
high-speed servicing of external interrupts and
timer interrupts is accommodated. The RTM is
a set of programs that can be integrated into OS
as a system task (resident in core as part of OS)
or it can be entered as a program in the batch job
stream. Once in execution, R TM establishes con­
trol over OS through the following steps:

1. It initializes itself.
2. It issues a supervisory control (SVC) call

to a program included in the MVT supervisor at
system generation.

3. It then replaces the MVT program status
words (PSW's) with its own, temporarily sus­
pending program execution and OS interrupts, if
any.

4. It either allows programs under MVT to

November - December 1971

continue execution or services a real-time job and
associated interrupts.

RTM gives first priority to real-time job execu­
tion and handling the associated interrupts. Real­
time jobs must identify themselves as such by
issuing an SVC to R TM. The normal MVT job
stream and interrupts continue to be processed in
background by MVT. Real-time jobs, while op­
erating under RTM initially, may also give SVC
calls to MVT. In this way real-time jobs may
utilize all OS programs, the nonreal-time require­
ments of these jobs being processed under MVT
in background.

R TM as a monitor is composed of such usual
supervisory programs as task scheduler, super­
visory routines, service routines, and access
methods. R TM also requires an initialization/
termination routine to handle its own initializa­
tion and termination of control over OS.

The supervisory routines consist of such pro-
grams as the real-time interrupt handler, error
detection routines, assignment of priority interrupt
levels (PIL's), identification of real-time devices,
real-time job initialization, termination procedures,
etc. The service routines allow the job program­
mer access to certain options and capabilities of
RTM such as program controlled "waits," and
they specify the program to gain control upon the
occurrence of an interrupt, reading and writing to
a real-time device, use of a peripheral timer,
masking and unmasking selected PIL's, etc.

The access methods to real-time devices may be
included as a part of R TM. In our case, the 2909
access method has been included. No real-time
devices, of course, can be accessed via the access
methods that are part of OS/ MVT.

Terminal Support Programs-Terminal support
programs are closely related to access methods
and may have some of the supervisory aspects of
monitors. The computer links employ three of
these terminal support programs:

1. SIMCON for the Simulation Console.
2. TYPER for the typewriter terminals.
3. FORTRAN callable I / O routines for 360

to CLCU.
These programs work between (or include) the

terminal access method and the job program.
They are link edited (called in from disk storage
and combined) with the job program and are con­
sequently not resident software.

Basically, the terminal support programs are an
extension of the terminal access methods. For

19

special terminals having such features as function
buttons, displays, and other interactive capabili­
ties, more servicing is required than just read,
write, and the four basic control functions of re­
quest, initiation, checking, and termination pro­
vided by the usual access method. The interface
with the job program may also be a relatively
high level instead of at the assembly level.

In the case of SIMCON, the terminal program
is called on by the job program to activate the
simulation console and initialize its various special
functions. It puts out a message on the SIMCON
nixie lights: "BEGIN." In the course of job pro­
gram execution and user commands, SIMCON
also displays other English-language-like messages.
SIMCON handles the interpretation and imple­
mentation of all function buttons for mode con­
trol, parameter changes, selection of integration
method, etc. Finally, SIMCON handles the deacti­
vation of the console and termination of the job
program as directed by the user from the console.

TYPER handles similar functions for type­
writer terminals and in conjunction with job pro­
grams that mayor may not be associated with a
computer link. TYPER allows a user at a type­
writer terminal to communicate with his program
through a series of simple high-level language in­
structions. The application program also may be
coded to allow it to output on the typewriter in
response to certain calculated conditions or in­
structions from the user. Originally the 2741's
operated through a separate access method, re­
quiring the operator to use several assembly lan­
guage-type instructions to call various support pro­
grams. This was awkward and required some
detailed programming. When TYPER was devel­
oped, it included the 2741 access method.

The FORTRAN callable routines are a set of
routines that may be called by a user program
to largely eliminate the need for understanding
the operation of the 2909 and the CLCU inter­
faces. They also eliminate the need for low-level
I/ O programming. Unlike SIMCON and TYPER,
these routines are not managed or supervised as
a single package by a program in the package.
The user programmer must, therefore, provide
this function in his job program. On the other
hand, the communication is not interactive and
the control is relatively straightforward. This
greatly simplifies the situation compared to hand­
ling the SIMCON or even the typewriter.

20

Test and Diagnostic Programs-The greatest
number of new programs that were developed in
support of the three links fall into the category of
diagnostic software. These programs were keys to
the successful completion of the overall system
and the individual links. For the operation system,
these programs are used for maintenance, and in
the hybrid case some are also used for automatic
setup and checkout of the analog computer.

Most of the diagnostic programs carry out three
types of operation: (a) to exercise or drive the
system, (b) to detect errors, and (c) to deter­
mine the cause of the errors.

In general, the driver will exercise the system in
all normal modes of operation, with a wide va­
riety of data and control signals; in some cases,
where other software or hardware are supposed
to cope with failures, errors are deliberately intro­
duced for testing. This is particularly important
in checkirig out the monitors and access methods.

In most cases a diagnostic program will be de­
signed primarily to test either hardware or soft­
ware since this generally avoids undue complexity
in the programming; it can also minimize the
number of subsystems that must be tied up at
anyone time; and it minimizes CPU time re­
quired for any particular kind of check.

The kinds of function that are often imple­
mented by separate programs are as follows:

1. Operator-interactive single-step machine
code tests.

2. Testing of all hardware features of the sys­
tem individually and printing out specific data
and errors.

3. Testing programs for software, with emula­
tion of hardware functions.

4. Operational or demonstration programs.
Translators-Translators allow a high-level lan­

guage to be translated to a lower level language.
In general, a translator may be viewed as being
(a) a batch operation, (b) an instruction-by-in­
struction translation with or without immediate
execution, or (c) a conversational or user inter­
active operation.

Developing a translator was not a goal of the
computer-to-computer link system since we ex­
pected to use those provided by the computer
manufacturers. However, the digital simulation
language (DSL), which seemed well suited to
SIMCON applications, did require some adapta­
tion to the 360/ 91 system. In addition, it was

APL T echnical Digest

desirable to expand the DSL translator to accom­
modate various functions of the SIMCON. This
expansion was accomplished by instructions that
became "calls" to SIMCON which is then link
edited as part of the job program. To meet these
secondary objectives, the DSL was modified to
provide easy, high-level programming for all jobs
to be linked to the SIMCON.

A hybrid static analog test (HYSA T) is a second
translator that was required to implement the var­
ious hybrid instructions for such functions as: (a)
select analog mode, (b) read digital voltmeter, and
(c) set potentiometer.

A great many more such operations are also
incorporated into HYSA T. This translator is in­
terpretive, allowing instructions to be handled one
at a time under operator control, or a source pro­
gram may be batch compiled.

Emulators--Only one emulator was developed
for the APL systems, but it was essential for de­
velopment of key software in parallel with the
procurement and checkout of the IBM 2909 inter­
face. The emulator simulated on the 360/ 91 the
control functions and data transfer of the 2909.
This allowed the hybrid 110 system (HYIOS) to
be written and checked out in parallel with the
2909.

Wherever hardware has been defined, such em­
ulators can be used to allow software and hard­
ware development to proceed in parallel. In addi­
tion to the time advantage of such an approach,
it also allows a more effective interchange to take
place between software and hardware personnel
before final design and implementation. This was
most important relative to the 2909 since APL,
EAI, and IBM were all involved in software and
hardware interfacing at this point in the system,
and the 2909 itself was developmental.

Basic Software/Hardware-The preceding dis­
cussion of software has outlined in some detail
the relationship between the hardware and soft­
ware. Figure 13 shows more directly how the
pieces fit together. The hardware terminal systems
are directly controlled by the lOS portion of the
system supervisor (OS/ MVT or RTM). At this
point the software generates hardware codes
(known as channel command words or CCW's in
IBM terminology). The necessary access methods
support special features and allow the applications
programmer to communicate with the system
supervisor and the lOS via SVC's, and control

November - December 1971

blocks. The applications programs communicate
with the access methods via callable routines or
directly compiled 110 instructions.

SIMCON

POCACM

DCUACM TYPER HYIOS

OS/MVT

SOFlWARE

RTAM

RTM

Fig. 13-How the pieces fit together.

Conclusion

All three of the basic links, SIMCON, hybrid
computer, and Univac 1230 are in regular use.
The hybrid computer has demonstrated the most
rapid growth in workload and may soon require
more than one 8-hour shift.

Work that remains to be done to improve the
systems falls in a variety of categories. For the
hybrid computer, fully automated, easy to run,
very comprehensive maintenance diagnostics
would be of major value in minimizing the
maintenance effort. For the multiple computers,
using the 1230 link, the ability to time-share the
CLCU as well as time-sharing the several CPU's
would greatly increase efficiency of the rather
powerful computer complex. All three systems
would benefit from a better simulation language
with a compiler easily extendable with new in­
structions, and with an optional conversational
capability. Also, the development of on-line error
recovery and debug facilities for applications pro­
grams would greatly enhance the usability of the
systems.

21

