
on 
PAVING 
the 
PLANE 

I t is well known that the Euclidean plane can be 
subdivided into an infinite number of congruent 

regular hexagons in such a way that there are 
neither overlaps nor gaps, that is, every point of the 
plane is interior to or on the boundary of at least 
one hexagon and no point is an interior point of 
more than one hexagon. The same statement is 
also true for squares and equilateral triangles as 
well as regular hexagons. These facts are well 

Fig. I-Forming a hexagon that paves by translation 
from an arbitrary quadrilateral. 
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One of the oldest problems in Euclidean geometry is the 
problem of delineating those shapes that are suitable 
for tiles or paving stones in the sense that replications 
of the given figure can fit together to cover a flat area 
without gaps oroverlappings. Although the problem is 
deceptively simple to state, it has proved remarkably 
refractory. The author has recently succeeded in carrying 
through a complete determination in the special case of 
convex polygons. This paper contains a few critical proofs 
and a complete statement of the results, but not a complete 
proof for the excellent reason that a complete proof would 
require a rather large book. 

R. B. Kershner 

known to the manufacturers of bathroom tiles and 
were also known to the early Greek geometers (and 
tilemakers). Indeed the Greek geometers knew, 
further , that the three cases of triangles, squares, 
and hexagons were the only cases of regular poly
gons which could " pave the plane." 

That a regular n-gon cannot pave unless n = 3,4, 
or 6 is very easily shown. In fact the vertex angle 

f I . ( n-2 ) 'f h' . o a regu ar n-gon IS - n- 7r; 1 t IS n-gon IS to 

pave, some integral number, k, of these vertices 
must join together at a point to fill 27r. Thus 

k (n~2 ) 7r = 27r , 

or 
kn = 2(n+k). (1) 

The only posItIve integer solutions of Eq. (1) are 
n=3 , k=6; n=4,k=4; n=6,k=3 . 

As soon as one considers polygons other than 
regular polygons, many more possibilities exist. 
As any bricklayer knows, every rectangle will pave 
the plane. Indeed, it is easily seen that every 
parallelogram paves by simple translations. More 
generally a hexagon which consi"sts of three pairs of 
parallel and equal opposite sides also paves by 
translations. It is not quite so obvious, but easily 
seen that every quadrilateral paves the plane. To 
see this , draw a quadrilateral and then draw the 
congruent figure obtained by a 7r radian rotation 
about the midpoint of one side (see Fig. 1) . The 
boundary of these two quadrilaterals forms a hexa
gon with three pairs of parallel and equal opposite 
sides and so paves the plane by translation. Since 
a triangle may be considered as a quadrilateral 
with one side of zero length then, clearly, every 
triangle also paves the plane. 

APL T echnical Digest 



If a polygon is not restricted to being convex 
(interior angles less than 7r), there is no limit to 
the number of sides it may have and still pave the 
plane. To see this, first consider a paving of the 
plane by translations of a hexagon with three pairs 
of parallel and equal opposite sides (as in the 
dotted figures in Fig. 2). Now, clearly, any side 
may be replaced by an arbitrary polygonal (zig
zag) path joining the same vertices provided the 
opposite side is similarly replaced . Figures such as 
those in Fig. 2 which can pave the plane by trans
lations alone are called translation cells and playa 
very important role in the investigations of paving. 
In fact, it turns out that any convex polygon which 
can pave the plane can do so by building up a 
translation cell by joining together a finite number 
of replications of itself and then completing the 
paving by translations of this translation cell. How
ever it is not true that all pavings by convex poly
gons are of this nature. In some cases there are 
many completely different ways to pave the plane 
with the same polygon . For example, a paving with 
equilateral right triangles can be obtained by start
ing with any paving by squares and then dividing 
each square into two triangles by drawing either 
diagonal according to an arbitrary pattern. 

The possibility, illustrated in Fig. 2, of paving 
the plane with polygons with a very large number 
of sides is somewhat discouraging to an attempt to 
enumerate all possibilities. Fortunately, if we 
restrict attention to the particularly interesting 
case of convex polygons (those with all interior 
angles less than 7r) things are much less chaotic. 
In this case the polygon cannot have more than six 
sides as will be shown next. 

Consider a paving of a Cartesian plane by a con
vex polygon and let C = C( R) be the collection of 
those polygons which have at least a point in 

Fig. 2-Paving a plane with translation cells. 
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common with a fixed large circle of radius R about 
the origin of the Cartesian plane. For such a 
(simply-connected) finite collection of polygons, 
there is a very well known topological equation 
connecting the number of vertices , edges , and 
faces, first established by Euler. The Euler 
equation is 

V-E+F=l, (2) 
where V is the number of vertices, E is the num
ber of edges,and F is the number of faces (i.e. , the 
number of polygons). It will be necessary to dis
tinguish between interior and boundary edges; 
accordingly let Ei be the number of interior edges 
(i .e., edges separating two of the faces of C) and Eb 
the number of remaining (boundary) edges so that 

E=Ei+Eb. (3) 
In Fig. 3 the interior edges are solid and the 
boundary edges are dotted. Similarly let Vb be the 
number of vertices at which exactly two boundary 
edges (and no interior edges) join and Vi the num
ber of remaining (interior) vertices, so that 
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Fig. 3-Section of pavement showing interior (solid) 
and boundary (dotted) edges and vertices. 

In Fig. 3 the boundary vertices are marked with a 
small circle. It is easily seen from the convexity 
of the polygons that at least three edges come 
together at every interior vertex. Thus if k is the 
average number of edges joining at an interior 
vertex we have 

k Z. 3. (5 ) 

Since the (average) number of edges at a boundary 
vertex is 2, then k Vi + 2 Vb gives the number of 
edges but with each one counted twice (once from 
each end). 
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Thus 
k Vi + 2 Vb = 2E. (6 ) 

Now let the number of sides of the polygon be n. 
Then n F will yield the total number of edges but 
with interior edges counted twice and boundary 
edges counted only once. Thus 

n F = 2 Ei + Eb = 2E - Eb· (7) 
Using Eqs. (7), (6), and (4) to eliminate F,E, and 
V in the Euler relation (1) yields 

[2(n+k )-kn] =k_ 2(2Vb -Eb). (8) 

Vi Vi 
Now Eq. (8) holds for the number of interior ver
tices, boundary vertices, and boundary edges of 
any collection C( R) of the polygons covering a 
circle of radius R. As the radius R is allowed to 
increase without limit , it is seen that the right side 
of Eq. (8) approaches zero since Vb and Eb increase 
linearly with R while V, increases quadratically. 
T hus 

2(n+k) - kn = 0, (9) 
where k is now the limiting value or the average 
number of edges per vertex in the paving. Notice 
that Eq. (9) is the same as Eq. (1) , which arose in 
quite a different way. From Eq. (9), if n>6 then 
k<3; this contradicts Eq. (5). This shows that a 
convex paving polygon has at most six sides . 

We have seen that all triangles and quadri
laterals do pave the plane. We have also seen 
that , for convex polygons, n5,6. This leaves only 
pentagons and hexagons to be considered. This 
was approximately where the problem stood in 
1918 . In that year, K . Reinhardt 1 published a 
thesis which made a very substantial attack on the 
problem of pentagons and hexagons . In fact his 
treatment of hexagons was complete and he 
showed that there were just three general types of 
hexagon that can pave the plane, namely, those 
that I will call , in the sequel , hexagons of Types 
1, 2 , 3. He also made a noble beginning to the 
treatment of pentagons and established the exist
ence of five types, those that I will call pentagons 
of Types 1, 2 , 3, 4, and 5 . At this point either his 
technique or his fortitude failed him and he closed 
the thesis with the statement that , in principle, it 
ought to be possible to complete the consideration 
of pentagons along the lines of his considerations 
up to that point, but it would be very tedious and 
there was always the possibility that no further 
types would emerge. Indeed, it is quite clear that 
Reinhardt and everyone else in the field thought 
that the Reinhardt list was probably complete. 

For ~easons that I would have difficulty explain
ing,! have been intrigued by this problem for some 
35 years. Every 5 or 10 years I have made some sort 

1 K. Reinhardt , Uber die Zerlegung der Ebene in Polygone, Dissertation der 
Naturwiss. Fakultat , Universitat Frankfurt/ Main, Borna, 1918. 
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of attempt to solve the problem. Some two years 
ago I finally discovered a method of classifying 
the possibilities for pentagons in a more convenient 
way than Reinhardt's to yield an approach that 
was humanly possible to carry to completion 
(though just barely ). The result of this investiga
tion was the discovery that there were just three 
additional types of pentagon, Types 6 , 7, and 8 , 
over and above those found by Reinhardt, which 
can pave the plane. These pavings are totally sur
prising. The discovery of their existence is a source 
of considerable gratification. 

I will close by stating the results that categorize 
those hexagons and pentagons which can pave the 
plane. In order to state the results, let the angles 
of hexagons be denoted, consecutively as A, B, C,D, 
E, F, and the sides as a, b, c, d, e, f, in such a 
way that a and b are the sides of A, band c are 
the sides of B, etc . Similarly, for a pentagon let 
the angles be, consecutively, A, B, C, D, E, and the 
sides a, b, c, d, e, with a and b the sides of A, 
etc. Then we can state 

THEOREM 1: A convex hexagon can pave the plane if and 
only zj it is one of the following three types: 
Hexagon of Type 7: A + B + C = 27r, a = d; 
Hexagon of Type 2: A + B + D = 27r, a = d, c = e; 
Hexagon of Type 3: A = C = E = 7) 7r, a = b, c = d, 

e=j. 
THEOREM 2: A convex pentagon can pave the plane zj and 

only if it is one of the following eight types: 
Pentagon of Type 7: A + B + C = 27r ; 
Pentagon of Type 2: A + B + D = 27r, a = d; 
Pentagon of Type 3: A = C = D = 7)7r, a = b, 

d = c + e; 
Pentagon of Type 4: A = C = ~7r , a = b, c = d; 
Pentagon of Type 5: A = 7)7r, C = 1'3 7r, a = b, c = d; 
Pentagon of Type 6: A + B + D = 27r, A = 2C, 

a = b = e, c = d; 
Pentagon of Type 7: 2B + C 2D + A 27r, 

a = b = c = d; 
Pentagon of Type 8: 2A + B 2D + C 27r, 

a = b = c = d. 
The first three types of pentagon can be con

sidered as special cases of the three types of 
hexagon and indeed can be converted to hexagons 
of the desired types by appropriately inserting a 
vertex along one of the sides. However, the remain
ing five types of pentagon do not arise as special 
cases of hexagons which can pave the plane. 

The proof that the list in Theorems 1 and 2 is 
complete is extremely laborious and will be given 
elsewhere. The fact that these types do pave, how
ever , is quite straightforward and, indeed , is 
adequately indicated by the accompanying illu
strative figures . In each case a collection of eight 
or less of the polygons fit together to form a trans
lation cell. 
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(a) Individual hexagon (b) Section of pavement 

Hexagon of Type 1; A + B + C = 2 ... , a = d 

a 

(a) Individual hexagon (b) Section of pavement 

Hexagon of Type 2; A + B + D = 2 ... , a = d, c = e 

(a) Individual hexagon (b) Section of pavement 

Hexagon of Type 3; A = C = E = (2A)"', a = b, c = d, e = f 

.T uly - August 1969 7 



d 

E A 

a 

(a) Individual pentagon (b) Section of pavement 

Pentagon of Type 1; A + B + C = 21r 

(a) Individual pentagon (b) Section of pavement 

Pentagon of Type 2; A + B + D = 21r,o = d 

(a) Individual pentagon (b) Section of pavement 

Pentagon of Type 3; A = C = D = (2A)1r,o = b, d = c + e 
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(a) Individual pentagon 
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(b) Section of pavement 

Pentagon of Type 4; A = C = (IA)'lr, a = b, c = d 
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(a) Individual pentagon 
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(b) Section of pavement 

Pentagon of Type 5; A = (IA)'lr, C = (%)'lr, a = b , c = d 
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(a) Individual pentagon (b) Section of pavement 

Pentagon of Type 6; A + B + D = 2~, A = 2C,0 = b = e, C = d 

(0) Individual pentagon (b) Section of pavement 

Pentagon of Type 7;2B + C = 2D + A = 2~, 0 = b = C = d 

b 

(a) Individual pentagon (b) Section of pavement 

Pentagon of Type 8; 2A + B = 2D + C = 2~, 0 = b = c = d 
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