
Some communication and data processing systems use codes 
to detect and corl'ect errors that occur during transmission 
or processing of information. The codes introduce redundancy; 
however, this is offset by increased reliability in recovering 
information. Fire codes, -which provide protection against 
errors in bursts, are specifically discussed in this paper. 
Emphasis is placed on generating Fire codes using a computer 
program, selecting a code to satisfy a given system requirement, 
and implementing codes using existing techniques and hardware. 

ERROR DETECTION 
AND CORRECTION CODES 

P. T. Komiske 

T he advent of digital transmission systems which 
transfer quantized information rather than 

information in analog form has enhanced the 
importance of error-detecting and error-correcting 
codes. Major advances in the construction of these 
codes have been made in the last several years, 
with the objective of providing greater reliability 
in the recovery of intelligence in digital transmis­
sion systems. 

The design of many of these codes is based on a 
mathematical model which essentially establishes 

. rules for the incorporation of redundant informa­
tion. This redundancy can range from the mini­
mum necessary to provide error detection only, to 
a maximum that can yield almost any desired level 
of error correction. 

Error-detection and -correction codes have wide 
application in the fields of information-processing 
and communications. In the first of these, special 
error circuits are being designed into information­
processing systems. Although basic error detection 
circuits predominate, error correction is also pro­
vided in special military and commercial applica­
tions. In the field of communications; a variety of 
schemes for error detection and correction have 
been explored. These range from (1) feedback 
systems that re-transmit a complete set of original 
information, either automatically or on demand, to 
(2) codes that provide enough redundancy to de­
tect and correct any errors introduced during 
transmission, but without feedback in the system. 
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A typical system might be the communications 
link between a satellite and a ground station, where 
detection and correction are not possible unless a 
code is used. 

To illustrate the feedback system, we might con­
sider three sequential transmissions of the following 
information: "Start work at eight-thirty." A ma­
jority decision, e.g. two out of three, could be used 
to determine the correct letter. Instead of trans­
mitting the information in the above sequence, and 
then repeating if necessary, the information could 
also be sent as follows: "Start Start Start work 
work work at at at eight-thirty eight-thirty eight­
thirty." A decision to repeat each word would 
then be based on whether the word was understood 
at the time of receipt. This can be considered to 
be a way of coding information if the option of re­
transmission is omitted; the information is simply 
sent automatically a number of times. However, the 
information coding in this case does not permit re­
construction of the information under conditions of 
unusual interference. 

Redundant codes have been explored for pos­
sible application in communication systems sub­
.iected to environments that cause sequential errors 
(bursts). Since most present communication and 
information-processing systems operate in the 
binary number system, error bursts consist of sets 
of consecutive symbols (ones or zeros) that are the 
inverses of the original values. Mr. P. Fire of 
Stanford Electronics Laboratories developed a type 
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of code to cope with errors that occur in bursts.! 
The attractive feature of the Fire code is that it is 
easily implemented with known shift-register gen­
erator theory and techniques. 

In this paper we consider three aspects-genera­
tion, selection, and implementation-of the burst­
error-detecting and -correcting Fire- code. Based on 
the mathematical structure and constraints govern­
ing the generatio'n of Fire codes, a set of tables has 
been computed to permit convenient selection of 
the appropriate code for any system application 
within the limits of the tables (detection of up to 
25 symbol error bursts). Selection of the best code, 
normally a difficult procedure, is much simplified 
with these tables. 

Generation of a Table of Fire Codes 

The Fire codes are mathematically grounded in 
ring theory. Peterson gives the mathematical de­
velopmen t in detail. 2 

It can be shown that information can be repre­
sented by the coefficients of a polynomial. In the 
binary system, the coefficients are either ones or 
zeros. Information may then be considered to be 
the components of a vector in an n-dimensional 
space, where n is the length of a code vector in bits. 

The Fire codes are best described by a generat­
ing polynomial 

g(X) = p(X)(XC - 1), 

in which the two factors are relatively prime and 
p(X) is of degree m and irreducible, i.e. not divisible 
by any polynomial of degree greater than zero 
but less than m. 

In operation, the codes are capable of detecting 
any combination of two error bursts in which the 
length of the shorter burst is not greater than m 
bits and the sum of the burst lengths is no greater 
than c + 1 bits, or a single burst of length d bits 
which is not greater than c + m (the number of 
check symbols). A single error burst of length b 
can be corrected, providing that c 2:: b + d - 1 
and m 2:: b. 

The length of the code vector n is given by the 
least common multiple of e and c, where e is the 
order of the roots of the irreducible polynomial 
p(X). Further, c must not be divisible by e or the 
length n will not be maximal and the efficiency of 
the code will be reduced. 

1 P. Fire, "A Class of l\'lultiple-Error-Correcting Binary Codes for 
Non-Independent Errors," Stanford Electronics Laboratories Tech­
nical Report No. 55, April 1959, Stanford University, Stanford, 
California. 

2 W. Wesley Peterson, Error Correcting Codes, M.LT. Press and 
John Wiley and Sons, Inc., New York, 1961. 
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To shorten the code length n it is only necessary 
to set the first symbols transmitted equal to zero 
(by the appropriate feedback connections in the 
shift-register). This gives a shortened Fire code tha t 
is easily implemented. 

The governing mathematical constraints are: 

and 

d 2:: b, 

m 2:: b, 

c 2:: b + d - 1, 

c 
- ~ I, where I is an integer, 
e 

c+m degree of the generator 
polynomial g(X). 

(1) 

(2) 

(3) 

(4) 

(5) 

To completely define the code, the following 
quantities must be computed for each code falling 
within the constraints defined above. 

and 

e = 271£ - 1, 

n - e X c, 

k n - (c + m), where k = number of 

(6) 

(7) 

information symbols. (8) 

An additional quantity of interest is the trans­
mission efficiency of the code, defined here as ki n. 

A computer progra~ has been developed to 
generate all codes defined by the boundary condi­
tions imposed by Eqs. (1) through (5), and to com­
pute the quantities defined by Eqs. (6) through (8). 

Examples of printouts of the codes generated 
through generator degree 25, with a minimum 
burst correction capability of 2, are shown in Ta­
bles I and II. 3 

Selection Criteria and Rules 

The tables facilitate either selection of a par­
ticular code or comparative evaluation of several 
codes, since they are listed in increasing order of 
the irreducible polynomial exponent m and in­
creasing numbers of check symbols, respectively. 
(Check symbols are the additional ones and zeros 
needed to provide the detection and correction 
desired; in other words, they represent redun­
dancy.) 

3 For the complete set of codes see, P. T. Komiske, Report on 
the Generation, Selection, and Implem entation of Burst Error 
Correction and Detection Fire Codes, The Johns Hopkins Uni­
versity, Applied Physics Laboratory, TG-666, March 1965. 
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The power (exponent) of the error burst detec­
tor, c, the number of check symbols, c + m, the 
number of information symbols, k, the code length, 
n, the transmission efficiency, kj n, and the order 
of the roots, e, of the irreducible polynomial p(X) 
are also listed. An asterisk in the n column indi­
cates that the computed length is not the code's 
actual length, i. e ., it is not the least common mul­
tiple of e and c. In these cases, it is necessary to 
hand-compute the code length by determining the 
least common multiple of e and c. 

The organization of information in the tables 
has been developed to expedite the selection of a 
particular code. Suggested selection rules are : 

1. Select from one of the two tables a basic 
value of b. 

2. From column m in that same table select the 
exponent of the irreducible polynomial. To facili­
tate this choice, it has been noted in several cases 
(m = 8, 9, and 10) that selection of the minimum 

TABLE I 

LIST OF CODES: BURST CORRECTION B = 3 

M C C+M K N KIN E 

3 5 8. 27. 35. 0.7714 7. 
) 6 9. 33. 42. 0.7S57 7. 
3 7 10. 39. 49. * 0.7959 7. 
3 8 11. 45. 56. 0.8036 7. 
~ n , ., 'l 1. ~ ..,. I\ Ii Q'i 7 

-t ~o ". ,--- £, ( U. O.~LOJ 4.). 

4 19 23. 262. 205. 0.9193 15. 
4 20 24. 276. 300. * 0.9200 15. 
4 21 25. 290. 315. >:~ 0.9206 15. 
S 5 10. 145. 155. 0.9355 31. 

TABLE II 

LIST OF CODES: BURST CORRECTION B =' 4 

M C C+M K N KIN E 

4 7 11. 94. 105. 0.8952 15. 
4 S 12. lOS. 120. 0.9000 15. 
4 9 13. 122. 135.* 0.9037 15. 
4 10 14. 136. 150. >:~ 0.9061 15. 
4 1 1 

1 " 1 50. "" " Q091 1 " 

0 9 1:>. :> J'. ~6/.* O.~ ' JJ b';. 

6 10 16. 61 ~~ 630. 0.9746 63. 
6 11 17. 676. 693. 0.9755 63. 
6 12 18. 738. 756. >:~ 0.9762 63. 
6 13 19. soo. 819. 0.9768 63. 
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value of m also minimizes hardware mechaniza­
tion. This, however, requires verification for other 
.values of m. 

3. From column c + m select the number of 
check symbols in accordance with requirements. 
(These requirements may call for (1) minimizing 
the number of check symbols, or (2) using the 
maximum number of check symbols to increase the 
detection capability.) Note that the tables provide 
for the use of 11 to 25 check symbols. System re­
quirements, or the desired detection capability, 
determine which value of c + m should be selected . 

For example, to correct a burst equal to 4, select 
the table for b = 4, which contains 120 codes. 
Next, enter column m and select the minimum m 
(m = 4 in this case). This value should be selected 
to minimize hardware. 

Implementation Using Shift Register 
T echniques and Binary Circuit Elements 

Encoding and decoding a Fire code involves the 
operations of addition, subtraction, multiplication, 
division, and recognition of predetermined patterns 
(such as "all zeros" or "all ones"). For transmission 
systems using a binary information channel, these 
calculations are carried out in a mathematical 
structure in which the rules are determined by the 
coding requirem ents. Addition and subtraction 
operations are performed in modulo two; the two 
operations are indistinguishable for the binary case, 
i.e. , only two symbols, 1 and 0, are required. 
Rules of addition and subtraction are I + 1 = 
o = 1 - 1. Similarly, x + x = x - x = 0 and 
x = x, 2x = 0, 3x = x, etc. Multiplication' and 
division are treated as operations involying two 
polynomials; the calculations can be mechanized 
by shift register techniques.1 , 2,4 

Shift Register Encoding Process 

We have stated that the generalized Fire code 
generator polynomial g(X) is given by: 

g(X) = p(X) (XC - 1), 

where p(X) is an irreducible polynomial of degree 
m and c + m is the number of check symbols (bits 
in the binary case). Thus, g(X) is a polynomial of 
degree c + m . 

Now let the information to be transmitted be 
represented as a sequence of k bits. This sequence 
may be described by a polynomial q of degree 
k - 1, 

4 l\f. B. Green lee , "Multiplication and Division of a Binary Num­
ber Polynomial by a Fixed Polynomial," APL/ JHU Internal Memo 
S6BV-SGS-007, January 1963. 
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Fig. I-Shift register for encoding a (7, 4) cyclic 
binary code. 

k-l 
q(X) = L a-iX i, 

i=O 

with ai being zero or one according to whether the 
ith bit in the sequence is a zero or a one. 

This information can be encoded by multiplying 
it by the generator polynomial g(X) , which yields 
a polynomial SeX) of degree c + m + k - I . 
Thus, SeX) = g(X) ·q(X). The sets of SeX) are 
called "code vectors." Shift-register multiplication 
circuits can be utilized. 2 ,4 

The hardware required to perform this multi­
plication is a k-bit shift register and some number, 
v, of modulo-two adders. However, there is a prob­
lem in transmitting data from this shift register 
since the information symbols in the receiver do 
not appear in sequence until after decoding (divi­
sion by g(X)). 

Encoding in this manner is not desirable since 
a shift register with k stages is required and trans­
mission of long information sequences, e.g. k very 
large, would require too much hardware. An exam­
ple of this encoding method is Peterson's cyclic 
(7, 4) binary code 

g(X) = 1 + X + X 3 and heX) = (X7 - l) / g(X) 

= 1 +X+X2+X4 

in view of the interchangeability of + and -
and the use of modulo-two operations . As a 
check, [(1 + X + X 2 + X4)(X3 + X + 1) '= 

X7 + 2X5 + 2X4 + 2X3 + 2X2 + 2X + 1 = 
X7 + 1 = X7 - 1]. The shift register shown in 
Fig. I can be used for encoding where ® repre­
sents a 'modulo-two adder and 0 represents a 
binary element. 

A mechanization technique for generating the 
code vectors with less hardware is desirable. 

Let f(X) be the polynomial of degree (n - 1), 
which represents the coded information received. 
If we use the well-known division algorithmf(X) = 
g(X) ·q(X) + reX), where g(X) is the coding poly­
nomial of degree (n - k) used at the transmitter, 
we obtain the divided polynomial q(X) and the 
remainder reX), where the degree of reX) is ob­
viously less than (n - k). We note that sincef(X) 
is a polynomial of degree (n - 1), we can have 
(n - k) new coefficients although only k bits of 
information are to be transmitted. We choose to 
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have the first (n - k) coefficients be zero, and write 

n-l 

I(X) = LaiXi. 
i=n-k 

We also write 
n-k-l 

reX) = L riX i 
i=O 

Then, 

q(X) ·g(X) (/(X) - reX)) 

n-l n-k-l 
= L aiXi - L riXi. 

i=n-k i=O 

The coefficients of the polynomial obtained by 
differencing these two series may be considered to 
be the components of a vector [j(x) - r(X)] in a 
space of dimension n. The set of such vectors may 
be thought of as code vectors, withf(X) represent­
ing the information bits and reX) (low order terms) 
symbolizing the check bits. The relationship is 
shown below: 

Low Order Bits High Order Bits Time Order of 
Transmission 

(1---------1 ) (1---------------1 ) 

~~ 
n - k Check Bits k Information Bits. 

• 

To encode a sequence of information bits, the 
remainder, reX), must be calculated by dividing 
I(X) by g(X). Only the remainder need be retained. 

This calculation can be mechanized by a shift­
register division circuit. 2 ,3 Note that division is the 
conventional division process but that addition and 
subtraction are modulo two. Simultaneously, reX) 
is computed as the k information bits are shifted 
into the channel. At the end of the k shifts, reX) 
remains in the register. The feedback connections 
corresponding to the divisor, g(X), are then dis­
abled and the (n - k) check bits, reX), are shifted 
into the channel, completing transmission of the 
code vector. This method is termed the (n - k) 
shift-register mechanization. 

For example, the (7,4) cyclic binary code shown 
for k-bit register encoding is simplified as: 

INPUT 

OUTPUT 

Fig. 2-An (n - k) stage shift register encoder. 
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g(X) = 1 + X + X3. 

A block diagram of the shift register is shown in 
Fig. 2. 

The hardware reduction in this case is one 
binary stage. For longer codes the reduction be­
comes greater, i.e., the shift-register length is c + m 
instead of k. Remembering that c + m = (n - k), 
the improvement is 

k k 

c + m n - k n 

k 

Shift-Register Decoding Process 

The receiver of the code vector (n bits) is assumed 
to have a-priori knowledge of the generator func­
tion g(X), the code length n, and the number of 
information bits k. 

The decoding process, which is not necessarily 
optimum for mechanization, is summarized as 
follows: 

I. The k information bits received are stored in 
a k-bit buffer and, simultaneously, the received 
vector is divided by the generator polynomial. The 
remainder left in the register is reX), the check 
symbol results. 

2. If reX) = ° at this time there were no errors 
in the received message. If reX) ~ 0, the division 
process is continued with no input to the division 

INPUT 

_G~TE--4 

l,r'~J~ 
GATE 

2 

BUFFER _~ 
INPUT - STORAGE T 

OUTPUT 

Fig. 3-(7, 4), (n - k) shift register decoder. 

circuit. For each shift in the decoder, one symbol 
is shifted out of the buffer, and after each shift 
the register contents are checked for a detectable 
error pattern ("all zeros" in the leftmost bits of 
the register). 

3. If a correctable error is detected, the feedback 
paths are disabled and the register output is added 
to the information symbols, one symbol at a time, 
as the symbols are shifted out of the buffer and 
the register. 

An example of the decoder for the (7, 4) code 
using an (n - k) shift-register encoder, where 
g(X) = I + X + X 3, is shown in Fig. 3. 

I t is desirable to have the correction symbols ap­
pear at the output of the check-symbol calculation 
device at the same time that the information sym-

265 INPUTYSYM BOLS 

~ 10 ---------- 101) i lNPUT 

L -,I J - 4 - ,1,-7-8 _ 911O_ II1I2 :~:E_ 14 + 

14 

(14) (265) 
,CHECK SYM BOLS INFORMA TIO N SYM BOLS .I 

TRANSMISSION SEQU ENCE 

Fig. 4-(279, 265), (n - k) shift register encoder. 

INPUT 

(265) 
INFORMATION SYMBOLS 

BUFFER 
STORAGE 

Fig. 5-(279, 265), (n - k) shift register decoder. 

GATE 
2 

~ 
OUTPUT 
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INPUT 

INPUT 

BOTH 

FEEDBACK 

GATE 
I 

3 - 4 6 - 7 8 - 9 10 I I 12 - 13 ,,-1 
GATE 

2 

TEST INPUT- BUFFER OUTPU~ STORAGE 

Fig. 6-(219, 200), (n - k) shift register decoder. 

bol to be corrected is available. To allow time for 
the division process required to obtain reX), the k 
information bits must be stored in a buffer while 
the vector SeX) is divided by g(X). 

From the practical standpoint the (n - k) shift­
register decoder is considered to be the only feasible 
decoder as opposed to the shift register of length k. 
The same reasoning applies as in the case of the 
encoder in that the timing circuits are essentially 
eliminated, and the shift register length is kept at 
a minimum, i.e. equal to the number of check 
symbols. 

Encoder-Decoder Mechanization 

Complete mechanization of encoding and de­
coding will now be shown for several codes. First , 
consider the generator polynomial, 

g(X) = p(X)(XC - 1), 

where 

p(X) (m 5), 
and 

(XC - I) = X 9 + 1, (c 9), 

and where [g(X) = (X5 + X2 + 1) (X9 + I) 
X14 + Xll + X 9 + X 5 + X2 + I] generates a 
binary Fire code oflength n = (2 5 

- 1) X 9 = 279. 
This code corrects any single error burst of length 
5 or less. I t has 14 check symbols and 279 - 14 = 
265 information symbols. Encoding can be done 
with the (n - k) shift register shown in Fig. 4. The 
decoder circuit is shown in Fig. 5. Note that the 
decoder and encoder shift registers are identical. 

The operation of the decoder follows the format 
outlined previously. Specifically, for this mechani­
zation: 
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1. The received code vector, i.e. 279 bits, is 
shifted into the buffer and shift register simultane­
ously. Gate 1 is open and allows the input to pass 
to the output. Gate 2 is closed until the entire 
code vector has been shifted into the register (the 
information bits are stored simultaneously in the 
buffer). 

2. The received code vector is shifted out of 
the buffer one symbol at a time, and the shift 

. register is shifted once for each symbol, with no 
input. 

3. The error pattern must be in the last five 
stages when all zeros appear in the first nine stages 
and the error pattern is about to come out of the 
buffer. Gate 1 is closed, Gate 2 is opened, and 
the symbols will be corrected. If the first nine 
stages never contain all zeros, an uncorrectable 
error pattern has been detected. If all stages con­
tain zeros, no errors have occurred. 

Mechanization of a Shortened Code 

It was stated earlier that a shortened code is 
required for some systems. This must be done if 
it is required to correct longer bursts, with the 
hardware and/ or system requirements held within 
practical limits. Note the code-burst-correcting 
capability versus the length of the code in Tables 
I and II. 

A code can be shortened by setting some of the 
high-order information symbols identically zero 
and omitting them. While the encoding and check­
symbol calculations are not affected by the lead­
ing zeros, decoding is affected. Assume that a 
code has 200 information symbols and is required 
to correct any burst of length 5 or less. The code 
already described can be used. To use the generator 
with the shortened system (214, 200) , the high-
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order information symbols are Set identically zero 
and not transmitted. At the decoding end, a pre­
multiplication by [(279 - 14 - 200) = 65] is 
required. For example, the check symbol result 
desired is X 79r(X) modulo g(X) instead of the 
original residue of X 14r(X) modulo g(X). Laborious 
calculation * shows that the remainder, after di­
viding X 79 by g(X), is 

X13+Xll+ X 10 + X9+X7+X4+X2+X+ 1. 

A block diagram of a decoder for this shortened 
code is shown in Fig. 6. There are, in effect, three 
types of feedback connections introduced by the 
pre-multiplication; (1) feedback connections 
unique to the normal g(X) (designated "feed­
back"), (2) feedback connections unique to the 
shortened g(X) (designated ("input"), and, (3) 
feedback connections common to both generator 
polynomials (designated "both"). The two ap­
plicable generator polynomials are shown below: 

Normal 
(X) = X14 + Xll + X 9 + X 5 + X2 + I 

g t t t t 
Common Common 

Shortened ~ " ~ ~ 
g(X)=X13 + Xll + X 10 +X9+X7+X4+X2+X+1. 

Encoder-Decoder Mechanization of 
Codes Generated 

Complete encoding-decoding mechanization for 
several codes from Tables I and II is given below 
to illustrate the procedure. 

1. (35, 27) Code Mechanization 
Consider the first code with a burst-correcting 

capability of 3 found in the tables. The character­
istics of this code are: 

b 3 
m 3 
c 5 
c+m 8 
k 27 
71 

e 

= 35 
= 7. 

The generator polynomial is: 

g(X) = p(X)(XC 
- 1) = p(X)(X5 - 1), 

where p(X) is an irreducible polynomial2,5 of de­
gree m. It is now necessary to select an irreducible 

• A multiplier-divider circuit of the type described in Ref. 4 call 
be used for this calculation. 

• R. W. Marsh, "Table of Irreducible Polynomials Over GF(2) 
Through Degree 19," NSA Report, Washington, D.C., 1957. 
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(27) INFORMATION SYMBOLS -

(8) (27) 
CHECK SYMBOLS INFORMATION SYMBOLS - OUTPUT 

Fig. 7-(35, 27) ,(n - k) shift register encoder. 

polynomial of degree 3 from Peterson's or Marsh's 
"Tables of Irreducible Polynomials." Only one 
p(X) exists, X 3 + X + 1 (Peterson's designation is 
138 = 10112)' Substituting, the generator poly­
nomial becomes 

g(X) = (X3 + X + I)(X5 
- 1), 

= X 8 + X 6 + X 5 
- X 3 - X-I 

or 

= X 8 + X 6 + X 5 + X 3 + X + 1 (since + 
and - are equivalent in this algebra). 

The (n - k) shift-register encoder and decoder 
block diagrams are shown in Figs. 7 and 8, re­
spectively. 

2. (23, 15) Shortened Code Mechanization 
Now consider shortening this code, say to a 

total of 23 symbols from its original length of 35 
symbols, i.e. (23, 15). The code's capability re­
mains fixed-it is in fact more powerful, but more 
redundant-and now has these capabilities: 

Shortened versus Normal 
b = 3 b = 3 
m = 3 m = 3 
c 5 c = 5 
c+m = 8 c + m 8 
k 15 k 27 

n 23 n 35 
e 7 e 7 

(8) CHECK SYMBOLS (27) INFORMATION SYMBOLS _ INPUT 

TEST 'T S~g~j;~E ~ 
(27) INFORMATION SYMBOLS - OUTPUT 

Fig. 8-(35, 27), (n - k) shift register decoder. 
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INPUT 

BOTH 

(8) CHECK lSYMBOLS (15) INFORMATION SYMBOLS - INPUT 

FEEDBACK 

INPUT----, 

GATE 
I 

(15) INFORMATION SYMBOLS - OUTPUT 

Fig. 9-Shortened code (23, 15), (n - k) shift register decoder. 

The generator polynomial for the shortened code 
(23, 15) must be computed. Assume that the 12 
high-order information symbols are identically zero 
and are not transmitted. A pre-multiplication by 
[(35 - 8 - 15) = 12] is required. This is equiva­
lent to shifting 12 times in the shift register, which 
takes care of the 12 symbols that are set to zero. 
The check symbol result desired is X 20r(X) modulo 
g(X) rather than X 8r(X) modulo g(X). By per­
forming the division of X 20 by g(X) the required 
remainder is found to be X7 + X 6 + X 5 + X2 + X. 

The new g(X) consists of three sets of feedback 
terms as shown previously. These are: 

Normal or original: 

g(X) = X 8 + X 6 + X 5+ X 3 + X + 1 

~ ~ t 
Common Common 

Shortened: t t t 
g(X) = X7 + X 6 + X 5 + X2 + X 

There are feedback 'connections unique to the 
normal g(X), feedback connections unique to the 
shortened g(X), and feedback connections com­
mon to both generator polynomials. The generator 
polynomial becomes g(X) = X 8 + X7 + X 6 + 
X 5 + X 3 + X2 + X + I and is mechanized as 
shown in Fig. 9. Note the three types of feedback 
connections. 

This example clearly shows the increased de­
coder complexity resulting from shortening the 
code, but the complexity is represented only by an 
increased number of modulo-two adders or "ex­
clusive or's," and not by a change of shift-register 
length. 

The result is that a very long code can retain all oj its 
capability with the shortened length, i.e., pre-multiplica­
tion by the number of shifts results only in a change 
of feedback connections in the decoder. The worst 
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case is a modulo-two adder between each decoder 
stage. 

Additional items of interest have been investi­
gated. For example, the second code with a burst­
correction capability of 4 has a greater single 
burst-detection capability, c + 1 = 9, than does 
the first code, c + 1 = 8, but has the same correc­
tion capability of 4. This is a feature that may be 
desirable in some systems in that the detection 
capability of the code has been increased. This, 
however, is at the expense of hardware; the code 
requires 12 shift-register stages, where the first re­
quired only 11. 

The first irreducible polynomial for a given de­
gree in Peterson's or Marsh's tables has a minimum 
number oj non-zero coefficients. Investigation has shown 
that in many cases this irreducible polynomial re­
quires the least number oj feedback connections in the 
decoder. 

Comparison of the complexity of the encoder­
decoder, using the two fourth-degree irreducible 
polynomials (minimum non-zero coefficient irre­
ducible polynomial and non-minimum non-zero co­
efficient irreducible polynomial) to implement the 
first code of Table II discussed above, shows a 
significant increase in hardware. The minimum non­
zero-coefficient polynomial requires five modulo­
two adders in the encoder and six modulo-two 
adders in the decoder. The non-minimum, non-zero­
coefficient polynomial requires nine modulo-two 
adders in the encoder and ten modulo-two adders 
in the decoder. Both methods do exactly the same 
job. Similar results are evident in the shortened 
code mechanization. 

Conclusions 

Fire codes, through generator degree 33, with a 
minimum burst correction capability of 2, have 
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been made available for engineering applications 
but are not all described in detail in this article. 
The format of the burst correction tables facilitates 
the selection of a particular code or the evaluation 
of several codes in that codes are listed in increasing 
order of burst correction capability, increasing 
order of the irreducible polynomial exponent, and 
increasing magnitude of the check symbols. The 
capabilities of very long codes are retained or even 
increased after shortening the codes to mechanize 
them. This property should be noted. A simple 
mechanization is available if shift registers are used 

and the hardware is minimized if the first or 
minimal non-zero coefficient irreducible poly­
nomial in Marsh's or Peterson's tables is used. 

Ways and 

A special-purpose computer has been developed 
at the Applied Physics Laboratory to perform 
multiplication and division of polynomials in the 
binary number system and in the required algebra 
when it is desirable to use a shortened code, thus 
eliminating the need for hand computation of 
residues. The same device doubles as an encoder 
or decoder simulator for generator polynomials 
of degree 36 and less. 

J. R. Apel 

Means of 

The two most beautiful forms in 
creation belong to a well-designed 
sailboat and a well-shaped woman. 
A categorical statement such as this 
would ordinarily bring a flood of 
abuse upon the person who made it, 
but among judges of boats and 
women, the statement goes virtually 
uncontested. Though both subjects 
would make an interesting discussion, 
this paper will concern itself only 
with boats. 

J. R . Apel, a physiqst in the Plasma 
Dynamics Group, co-authored a paper 
entitled " Beam-Plasma Interactions" 
in the May-June 1964 Digest. Com­
ing from a boatbuilding family, Mr. 
Apel studied boat design at the 
vVestlawn School of Yacht Design 
and practic.ed this profession for 
several years. 
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To those who know and under­
stand them, there is real beauty in 
the lines of a hull or the set of the 
rigging of a boat, be it an 8-foot 
dinghy or an 80-foot diesel yacht. 
To those who are untrained in things 
nautical but who respond keenly 
to the visual arts, it is apparent that 
ships and boats have a high degree 
of functional styling about them. It 
takes only a bit of study and ob­
servation by the novice to become 
educated to some of the niceties of 
the business and to become convinced 
that the old saw about boats being 
called "she" has more truth to it 
than would appear at first glance. 

This article will discuss the de­
sign of pleasure boats and the de­
signers; it will also discuss the con­
siderations that enter· into designing 
different types of boats. Examples 
of a few designs will be shown with 

the emphasis on speed boats and 
hydroplanes; and an examination, in 
a bit of detail , will be maeole of a 
150-mph Gold Cup h ydroplane. The 
presentation of this article will be 
given from the standpoint of one 
whose voca tion (in more fortunate 
times, perhaps) encompassed much 
of this subject matter, but who is 
now reduced to boating and boat 
design as an avocation only. So this 
will be a "hobby" article. 

Few of the technicalities of the 
trade will be presented and virtually 
no connection will be made with its 
mother-science, fluid dynamics. This 
is because first, the technicalities are 
not too interesting and second, yacht 
design is much more nearly an art 
than a science. With the exception 
of a few craft such as the 12-meter 
racing sailboats of recent years, 
orderly research effort in pleasure 
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