
A program written for the lEAf 7094 electronic 
computer yields viscous flow fields for various 
nonspherical bodies. Results compare well with 
previous analytic theory where it exists, but 
for most bodies the results are new. 

Since antiquity the sphere has been regarded as 
the perfect shape- an object of classic beauty. 

I t is entirely fitting that the classic theoretical solu­
tion of hydrodynamics is the viscous flow about a 
sphere given by G. G. Stokes in 1850.1 Stokes' 
solution correctly predicted the drag force on a 
sphere for slow viscous flows. In honor of that 
feat all very slow flows have since been called 
Stokes flows. This note presents the numerical 
electronic computer program that has been de­
veloped to give the Stokes flow field for bodies of 
revolution of rather arbitrary cross-sectional 
shape. 2 The shape illustrations show some bodies 
that have been used in the program. They can be 
identified as shapes of eggs, apples, pears, dumb­
bells, etc., or by more mathematical definitions. 

Of course, in the century since Stokes, Stokes 
flow solutions for nonspherical bodies have been 
sought by many others. Success has been attained 
for a few bodies: ellipsoid, 3 lens,4 hemisphere,4 and 

1 G. G. Stokes, "On the Effect of the Internal Friction of Fluids 
on Pendulums," Cambridge Philosophical Trans., 9, 1850, 8-106. 
(Also in Scientific Papers, University Press, Cambridge, 1901. ) 

~ V. O'Brien, " Stokes Flow About Deformed Spheroids," submitted 
for publication in Chern. Eng. Sci. 

3 A. Oberbeck, " tiber Stationare Fliissigkeit Bewegungen mit 
Beriicksichtigung der Inneren Reibung," Crelle Journal, 81, 1876, 
62-80. 

4 L. E. Payne and W. H. Pell, " The Stokes Flow Problem for a 
Class of Axially Symmetric Bodies," J. Fluid Mech ., 7 , 1960, 529-
549. 
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a hemispherical cap.5 The general analytical prob­
lem of an arbitrary shape is quite difficult. Re­
cently some steps toward generalization have been 
made by a linear perturbation technique. G This 
technique is limited to bodies that are only very 
slightly distorted spheroids. The bodies of revolu­
tion considered in our numerical program, by con­
trast, have deformations up to 50% or more of the 
undistorted radius. Bodies without rotational sym­
metry are excluded and the solution for a com­
pletely arbitrary shape is still a future goal. Many 
particle shapes of practical interest in several fields 
are covered by the present program. 

Axisymmetry eases the mathematical task of 
solving the Stokes flow equation. (Note all the 
bodies in Refs. 4 and 5 are bodies of revolution.) 
The partial differential equation is closely related 
to the better known Laplacian equation that ap­
pears so often in physical problems. The Stokes 
equation and its solutions fall within the province 
of generalized axially symmetric potential theory. 7 

In theory, any general Stokes solution can be used 
to meet the viscous nonslip boundary conditions 

5 W. D. Collins, "A Note on the Axisymmetric Stokes Flow of 
Viscous Fluid Past a Spherical Cap," Math ern atika, 10, 1963, 72-78. 

ft H. Brenner, "The Stokes Resistance of a Slightly Deformed 
Sphere," Chern. Eng. Sci., 19, 1964, 519-539. 

7 A. Weinstein, " On Tricomi's Equation and Generalized Axially 
Symmetric Potential Theory," Bull. Acad. Roy. Belgique, 37 , 1951 , 
p . 348. 
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at the surface of any closed body. In practice, 
exact analytic solutions are hard to find and are 
likely to be very complex expressions. 4

, 5 Our com­
puter program uses the general solution in spheri­
cal polar coordinates. The result, written as a 
finite series of simple terms, is only an approxi­
mation of'the exact solution. However, uniqueness 
of the solution is guaranteed,8 and the accuracy of 
the approximation can be checked. 

For those interested in the details of the mathe­
matics, the governing equation is 

( 1 ) 

This is the steady momentum equation of incom­
pressible fluid flow with the nonlinear inertial 
term neglected (u is the velocity vector, cf> the 
potential of a conservative force field such as the 
gravity field , p the pressure, p the density, and v 
the kinematic viscosity of the fluid ) . Axisymmetry 
allows the introduction of Stokes stream function 
t/J (proportional to the actual flux of fluid) in 
terms of the velocity components: 

___ at/J _ 1 at/J 
r2sinO DO ' Vo - rsinO a; , u.J.p - 0 . (2) 

Here the spherical polar coordinate system (r, 0, 
cp) has been used. The vorticity vector ~ is the 
curl of t., and in this axisymmetric case 

,. 

w = rs~nO [::2 + s~~O :0 (si~O :O)J t/J . (3 ) 

8 R. Berkel', " Integration des Equations du Mouvement d ' un Fluid~ 
Visqueuse Incompressible," Handbu ch der Ph ysik V II112, Springer­
Verlag , Berlin , 1963, p. 270. 

,12 

Taking the curl of Eq. (1 ) and substituting Eq. 
(3), the "vorticity form" of the Stokes flow equa­
tion is obtained: 

[ a2 sinO a (1 a)J ::! 
ar2 + 7 ao sinO ao t/J = O. (4 ) 

Note the resemblance of the operator in this fourth 
order partial differential equation to that of the 
axisymmetric Laplacian, 

The resemblance is not superficial or confined 
to the spherical polar coordinate system. Because 
the "Stokesian operator" and the Laplacian opera­
tor are intimately related, the similarity of form is 
apparent in all axisymmetric coordinate systems.!) 

The general spherical polar solution to Eq. 
(4) is 

00 

t/J = [ (anr-1H 1 + bnr-n+3 + cnrn 
'II ::::! 

+ dnrn+2) Cn-~ (cosO ) . 

Here Cn-~ (cosO ) is a Gegenbauer polynomial of 
order n and degree (-Y2 ) .1 0 A uniform flow 
condition at infinity requires 

so all coefficients of higher positive powers of r 
are necessarily zero. The computer program uses 

~ V . O ' Brien , " Axi-Symmetric Magnetic Fields and Related Prob­
lems," ] . Franklin 111st ., 275 , J a n. 1963, 24-35. 

] 0 W. Magnus and F . Oberhettinger, Formulas and Th eorem s f OT 

th e Functions 0/ Math ematical Ph }'sics, Chelsea Publishing Co. , 
New York, 1954. 

APL Technical Digest 



Fig. I-Flow chart for numerical solution of Stokes 
flow field. 

Fig. 2-Stream lines for a prolate ellipsoid of fine­
ness ratio 1.2. 
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only a finite number of terms (m) or the approxi­
mate Stokes stream function solution 

11Hl 

+ L (anr-n
+1 + bnr-n+3

) C n - lh (cosO). 
n=:.! 

For a perfect sphere all except the coefficients a2 

and b2 are zero. 1 

Program 

In essence the numerical program satisfies the 
zero velocity condition at a number of points on 

Fig. 3-Vorticity contours for a prolate ellipsoid of 
fineness ratio 1.2. 

the body section. This determines a finite number 
of coefficients in the series expansion of the general 
solution. The approximate solution is first checked 
and then used to calculate stream lines and 
vorticity throughout the field. The details of the 
IBM 7094 FORTRAN program, as capably worked 
out by Mrs. Mary Lynam (APL), follow the flow 
chart in Fig. 1. The program is very short and 
fast ; ten body cases are processed in 0.01 hr of 
machine time.* 

;~ The smallest time unit that registers on the electronic computer. 
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The program first computes the radius as a func­
tion of angle () from the given polar equation of 
the body section at 2m + 1 values of (J, or it ac­
cepts the points r (()) read in from a polar plot 
of the body. A typical value of m = 10 gives ac­
curate results for many bodies, and the numbers 
below apply to this m. The boundary conditions 
(both velocity components equal zero) are ex­
pressed in terms of the series solution for the 
stream function t/J : 

aI/J = 0 = -r2cos(} a (cos(}) 

111+1 -L (anr-n+ 1 + bnrn+3) Pn_1 (cos()), 
'11 =2 

and 

at/J = 0 = r (1-cos2 (}) ar 
111+1 

+ L[( -n+ 1) all r-n + (- n+3) bll r-n +2
] C ll - lh (cos(}) . 

1/.=:! 

(For computational purposes the Legendre poly­
nomials and the Gegenbauer polynomials can be 
expressed in terms of hypergeometric functions.) 
This leads to twenty simultaneous equations to set 
twenty coefficients (written as a 20 X 21 matrix ) . 
The equations are solved for the coefficients by a 
double precision iterative scheme. The solution 
con taining these coefficients is used to check the 
value of the stream function t/J back at the points 
used in the matrix calculation. (This checks the 
accuracy of the matrix and the inversion process.) 
The stream function t/J is also checked at ten 
intermediate body points not used in the matrix 
calculation. (This gives the accuracy of the ap­
proximate solution.) Finally, values of t/J and 
vorticity ware calculated at specified points in the 
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Fig. 4--Disturbance stream function for a prolate 
ellipsoid of fineness ratio 1.2. 
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field (100 - 200 points). Printout usually con­
sists of the starred boxes in Fig. 1, but other 
choices can be made. 

Results 

Many body shapes have been used in the pro­
gram via the polar parameter input and the 
read-in option. As shown in Figs. 2, 3, and 4, the 
results can be displayed in many ways such as 
stream line plots, vorticity contours, or disturbance 
stream functions. (The last is the difference from 
the perfect-sphere solution.) Perhaps the simplest 
way to summarize the results is to plot the viscous 
drag value as it varies with the deformation of the 
spheroid. Also the drag is the quantity most easily 
obtained from experiments. 

Figure 5 shows the calculated drag values for a 
series of prolate and oblate bodies. The bodies are 
slightly larger than the inscribed prolate and ob­
late ellipsoids even though they have the same 
axial dimensions. As expected from a theorem of 

I .2 ....----,-----.---,-----,----,----,---,-----,,-----.----, 

-0.5 -0.4 -0.3 -0.2 - 0.1 0 0.1 0.2 0.3 0.4 0.5 

AXIAL DEFORMATION, E 

Fig. 5--Calculated drag values for a series of pro­
late and oblate bodies. 
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Fig. 6-Calculated drag values for bodies having one 
hemisphere deformed prolately or oblately. 

Hill and Power,l1 the drag values are larger than 
the ellipsoid drag values. Both the exact analytic 
drag values and the ones determined numerically 
are shown for the ellipsoids. For very small de­
formations the linear perturbation theory (Ref. 
6 ) is valid, but not for the larger deformations. 
For deformations small enough for the linear 
theory to hold, the prolate (or oblate) body is 
indistinguishable from the prolate (or oblate) 
ellipsoid. 

Figure 6 shows the calculated drag values for 
bodies that have just one hemisphere deformed 
prolately or oblately. The linear perturbation 
theory predicts in this case one half of the drag 
increase (or decrease) of the prolate (or oblate) 

bodies above. The drag change is not linear with 
the amount of deformation beyond small values. 
Nevertheless, the drag change of the half-deformed 
object remains very close to one-half that of the 
evenly deformed one. 

The drag ratios shown in Figs. 5 and 6 are 
normalized to the drag of the un deformed sphere. 
Since the equator of the sphere has not been 
changed in the deformations, the same ratio holds 
for the drag coefficients. (The drag coefficient is 
the drag divided by one-half the product of 

11 R. Hill a nd G. Power, " Extremum Principles for Slow Viscous 
Flow and the Approximate Calculation of Drag," Quart. ]. M ech . 
and Appl. Math., 9 , 1956, 313-319. 
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Fig. 7-Comparison of computed ellipsoid drag to 
drag of equivalent spheres. 

frontal area, density, and velocity squared.) How­
ever, the drag for nonspherical particles is often 
expressed in relation to the drag of the sphere with 
equal volume, the so-called equivalent sphere. 
Prolate bodies with the same equatorial area have 
more volume than the unit sphere, and conversely, 
oblate bodies have less. The volume of the 
equivalent sphere rises more rapidly with the de­
formation parameter € than the normalized drag 
value. Therefore, the prolate bodies have less drag 
than the equivalent spheres, and the oblate bodies 
more (Fig. 7). 

Plots similar to Figs. 5 and 6 have been pre­
pared for other classes of deformed spheroids. The 
curve of the calculated values of the drag coincides 
with the linear prediction for very small deforma­
tions. The relative drag values of bodies of dif­
ferent classes are in accord with the Hill-Power 
theorem. 

For very large deformations the values of the 
coefficients computed for the ten terms of the 
approximate flow solution do not diminish very 
rapidly with n. This shows that the exact (in­
finite series) expansion converges very slowly and 
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that not enough terms have been retained for an 
accurate approximation. The stream function 
checks confirm the inaccuracy of the approxima­
tion in these cases. Likewise, body shapes with con­
voluted or corrugated edges do not yield valid 
solutions with so few terms. However, it is possible 
in many cases to provide reliable lower and upper 
bounds on the drag value that differ by just several 
percent from m = 10 calculations (Figs. 8 and 9). 
The value of m can be increased to provide more 
accurate numerical solutions. t 

Quite similar calculations can also be undertaken 
with the general series solution written in spheroidal 
coordinates (Ref. 4 ) . The form of the solution 
is more complicated, but each term can be pro­
grammed for the electronic computer. The matrix 
operations would then be exactly as for the spheri­
cal solution. The convergence of the finite 
spheroidal approximation would be much more 
rapid for bodies that resemble spheroids with high 
eccentricity. Thus, a program written in spheroidal 
coordinates would permit Stokes flow solutions for 
spheroids more grossly deformed than the ones 
discussed here. 

t However, increasing 111 without limit will probably reach a point 
of diminishing return due to inherent roundoff errors. 
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Conclusion 

The speed and capacity of the modern electronic 
computer allow the solution of Sto~es flow prob­
lems for a wide array of body shapes. The straight­
forward program gives accurate velocity fields for 
bodies that are impractical to handle by direct 
analytical methods. It gives drag values to high 
accuracy for these body shapes, and drag estimates 
for a larger class of bodies. 

The flow range is limited to very low Reynolds 
number flows by the neglect of the inertial term 
in the flow equation. This limitation, somewhat a 
handicap to engineering use, can be overcome by 
further calculations using the full momentum 
equation. The detailed computations have not yet 
been carried out for all these bodies. However, on 
the basis of Refs. 12 and 13, the increased drag 
due to the inertial effect is simply a multiple of 
the Stokes drag calculated by this numerical pro­
gram for bodies with fore-and-aft symmetry. For 
bodies without this symmetry, the inertial drag 
effect requires further calculation. 

l~ V. O ' Brien , Axisymmetric Viscous Flows Correct to the First 
Order in R eynolds Number, CM-lO03, The Johns Hopkins Uni­
versity, Applied Physics Laboratory, Oct. 1961. 

13 W. Chester, " On Oseen 's Approximation," ] . Fluid M ech., 13 , 

1962 , 557-569. 
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