
Rocket motors sometimes break in to acoustic oscillation 
of such amplitude that the consequences are devastatin g 
to the performance and even to the integrity of the 
motor. This phenomenon has led to a number of theoretical 
studies of the mechanics by which the energy of burning 
propellants is converted to high-amplitude sound. A nalysis 
of the problem leads to the determination of analytical 
criteria for stabi lity , whose satisfaction imposes certain 
restrictions on the properties of the propellant and on R. W. Hart 
the motor configuration. 

COMBUSTION 
INSTABILITY in Solid Rockets 

To most casual observers whose closest contact 
with a solid propellant rocket has been a Fourth 

of July sky rocket, it might seem that the design 
of such a rocket motor ought to pose few problems. 
Admittedly, there will be the question of its 
trajectory, which will involve the exterior bal
listician, but we are concerned here with the 
design of the motor itself and not with where it 
goes. The connection between rocket motors and 
acoustics is a vital and important one and of 
great concern to many whose responsibility in
volves the defense of our nation. Its explanation 
and understanding involve the focusing of several 
disciplines of science upon the central problem of 
how sound is amplified and attenuated in the 
hot and hostile environs of a rocket motor; thus, 
the central problem here must be attacked not 
only by the chemist, the fluid mechanician, the 
mechanical and chemical engineer, and the 
rheologist, but also, in a vital way, by the acousti
CIan. 

By way of historical interest, and to put the 
problem in context, it has been asserted that solid
propellant rocket instability made its first dramatic 
reappearance in recent times during the last war. 
Certain British rockets occasionally exploded 
"without cause" very soon after firing. Since the 
rockets were designed for release from under the 
wings of planes, and since the aircraft were not 
designed to survive flying through the fragments 
of their own rockets, this was a serious problem. 
Throughout the subsequent years unstable burn
ing, in varied guises, has been a frequent nemesis 
to the rocket designer. In fact, it may not even 
be an exaggeration to say that most rockets have 
been unstable at one time or another during their 
initial development. 
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From the practical point of view, the develop
ment of rocket motors still remains, in many 
respects, an art rather than a science. Thus, when 
a motor is found occasionally to be unstable during 
the course of its early development, various cut
and-try procedures have customarily been at
tempted in order to eliminate the instability. 
Such procedures are costly, and the need for a 
fundamental understanding of unstable burning 
is evident. 

Much progress has been made in the develop
ment of a basic, and at the same time practically 
useful, understanding of the instability problem, 
but much remains to be accomplished. In the 
following, we shall examine the present status of 
this understanding, with emphasis on its acoustic 
aspects. We shall especially attempt to focus 
attention on many 9f the unsolved areas of the 
problem which fall within the domain of acoustics.* 

The Nature of the Stability Problem 
When unstable motors such as the one men

tioned above are encased in heavy steel chambers 
used for ground testing purposes, pressure-time 
traces similar to those of Fig. I are obtained. In 
view of the high overpressures which these traces 
show, the fracturing of the relatively lightly 
encased flight motors is not too surprising. 

The essential clue to the most frequently oc
curring mechanism producing unstable burning 
is provided by the response of microphones es
pecially constructed to withstand the hostile 
environment within the motor chamber. As shown 
in Fig. 2, the high overpressures are typically 
• Most of the work reported here has been carried out under the direction 
of F. T . McClure and in collab oration with J. F. Bird. Some of the very 
recent work has been done with the collaboration of R . H. Cantrell. 
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Fig.l-Pressure-time traces characteristic· of an 
unstable rocket motor. The two curves correspond 
to two firing temperatures. (From W. G. Brownlee.) 

accompanied by a rather severe acoustic pressure 
oscillation in the motor cavity. This oscillatory 
pressure is often comparable to the mean pressure 
(which is typically 30 to 70 atm.). Sound fields of 
this magnitude are almost without equal, and it is 
not surprising that they can do serious damage to 
the motor. (Surprisingly enough, the acoustic 
field outside the motor often shows little of the 
ferocity contained within, a point which we shall 
touch on later.) The frequency-analyzed output 
of a microphone placed in a cylindrical motor with 
an internally burning charge (cf. Fig. 8) is shown 
in Fig. 3; the amplitudes of the various frequency 
components are indicated by the brightness of 
the oscilloscope trace. 

It was easily recognized that the frequencies 
observed were associated with the acoustic modes 
of the gas-filled part of the motor cavity. Thus, 
the low-frequency mode shown in Fig. 3 is the 
lowest axial mode, with its frequency rising slowly 
with time as the grain shortens due to end burn
ing. The higher frequency modes are transverse 
modes of the chamber, which decrease in fre
quency as the propellant burns radially outward. 
Thus, it becomes clear that the unstable rocket 
motor is, in fact, an acoustic oscillator. 

There are two obvious and diverging directions 
which the interior ballistician might take. On 
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Fig.2-0scilloscope trace showing pressure. The 
upper trace is the oscillatory pressure component, 
and its magnitude is read off on the right-hand 
ordinate scale. The lower trace is the mean pres
sure, as indicated by the left-hand scale. (From 
E. W. Price.) 
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Fig.3-Frequency versus percent of web burned, 
illustrating the usual occurrence of oscillations in 
acoustic modes and, for very large amplitude cases, 
in harmonics of the acoustic modes. (From T. 
Angelus.) 

the one hand, his intellectual curiosity may lead 
him toward the explanation of the properties of 
unstable motors in terms of the large-amplitude 
acoustic fields. On the other hand, he may pursue 
the central question which concerns the reasons 
why such fields may build up in the first place, 
and thereby develop an understanding of how 
they may be avoided. This latter choice is the 
one of greatest immediate significance, and is the 
one which would lie nearest the concern of the 
acoustician. Thus, we shall consider mainly the 
question of whether or not a rocket motor will or 
will not be acoustically stable in the presence of 
arbitrarily-small disturbances. This will restrict 
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our attention to the relatively simple, but still 
very complex, domain of ordinary linear acoustics. 

In general, the question of stability or in
stability of an acoustic system is to be resolved by 
considering the balance of acoustic gains and 
acoustic losses. If the losses are sufficiently great 
compared to the gains, then stability will result. 
Thus, the one ingredient which is absolutely 
essential to the existence of acoustic instability 
will be an acoustic amplifier. Where will we find 
a source of energy for the acoustic field in a solid 
propellant motor? The answer to this question is 
to be found in the thin burning region at the 
propellant surface. 

Acoustic Amplification 
at the Burning Surface 

A very delicate balance exists in the burning 
region between the rate of efflux of gasified solid 
and the rate at which the flame front eats away 
at this gas (cf. Fig. 4). If the solid should begin 
to gasify at too fast a rate, the flame front will 
be pushed away from the solid, the flow of heat 
from the flame to the solid will thereby be di
minished, and the gasification rate will be reduced. 
A similar compensating action applies if the 
gasification rate fluctuates downward or if the 
flame velocity itself fluctuates. Stable burning will 
ordinarily result as long as the combustion zone 
has time to equilibrize between the disturbances. 
Since the steady-state burning rate of a propellant 
depends on pressure, it is not obvious just what 
will happen as a result of the rapid pressure var
iations characterizing a sound wave. One must 
have recourse to a physico-chemico-mathematical 
analysis of the response of the combustion zone 
to pressure disturbances. 

What should be the major specific goal of such 
an analysis? From the acoustical point of view, 
the response of a surface is frequently characterized 
by a "specific acoustic admittance," 

Y= 

amplitude of acoustic velocity 
directed into the surface 

acoustic pressure amplitude 

GAS rHASE 
LAYER 

x - -10- 3 cm X=O X - +10- 3 cm 

'-------.. ---~-----.. ----~ COMBUSTION ZONE 

Fig.4--Schematic illustration of the combustion 
region. 
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The real part of this admittance describes the 
extent to which sound is amplified or attenuated. 
If the real part is negative, amplification occurs, 
whereas attenuation will occur when the real 
part is positive. Thus, the determination of the 
specific acoustic admittance of the burning pro
pellant surface will be one item of major concern. 

The ideal propellant, of course, would be one 
which would be incapable of acting as a source of 
an acoustic field. In the absence of a flow field, 
the condition that the admittance of the propellant 
have a positive real part would insure this feature. 
In the presence of flow, however, energy is trans
ferred not only by a mechanical wave at the speed 
of sound, but also by convection at the mean flow 
speed. If the energy transported convectively away 
from the propellant should be converted back into 
sound somewhere downstream, then there could 
be a net input of energy into the acoustic field 
even though the burning surface did not quite 
succeed in amplifying sound. It turns out that 
such a conversion does occur for axial modes in 
an end- burning, center-vented chamber (a "T" 
motor).! In that case, the condition that the real 
part of the admittance be greater than zero, while 
sufficient to insure attenuation rather than ampli
fication of the mechanical wave at the propellant 
surface, will not be quite sufficient to insure 
stability. Under these conditions, it turns out 
that for typical geometries the criterion for sta
bility reads 

where Yp is the propellant specific acoustical 
admittance, Vp is the speed of the hot product 
gas leaving the burning zone, 'Y is the specific 
heat ratio, and P is the mean pressure. 

In order to illuminate the nature of the ad
mittance of the burning surface, it will be helpful 
first to relate it to the mass rate of burning of the 
propellant. We note that the mass flow rate at the 
hot boundary of the burning zone is related to the 
local density p and velocity v by the relationship 
m = pv. Upon perturbing this, and assuming that 
the ratio of fluctuating density to pressure is 
given by the usual adiabatic relationship (1 / 'Y, 
where 'Y is the usual specific heat ratio) charac
teristic of a sound field, we would find 

Y = -;p (~ -;) . (1) 

Here, the tilde indicates the Fourier amplitude 

1 F. T. McClure, R. W. Hart, and R . H. Cantrell, " Interaction Between 
Sound and Flow-Stability of T-Burners, " The J ohns Hopkins Univer
sity, Applied Physics Laboratory, T G 335-12 (to be published). 
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in the usual ei wt notation, the bars indicate time 
average values, and {lI E is the ratio of the frac
tional increment in burning rate (m - m)l m to 
the fractional increment in acoustic pressure ampli
tude, E. Thus, we would expect amplification at 
the propellant surface if {lI E should exceed II ')'· * 
An appreciation of the size of the burning rate 
response, as measured by the quantity {lI E, can 
be obtained by considering the limiting case of 
zero frequency, where considerable information 
is directly available. For zero frequency, the 
effect of pressure on burning rate is usually written 
in the form 

(la) 

where n is the so-called pressure index. This pres
sure index is always less than unity, and it is 
commonly between about 0.2 and 0.8. For the 
so-called mesa propellants, n may be zero and 
even somewhat negative at some pressures. Com
parison of Eq. (Ia) with Eq. (1) shows that in the 
zero frequency limit we expect {lI E --+ n. It follows 
that since n is ordinarily less than II')', propellants 
are not expected to amplify sound of very low 
frequency. 

It is clear, then, that one of the important ex
perimental tasks concerns the measurement of the 
burning surface admittance, and that one of the 
important theoretical tasks concerns the illumina
tion of the structure of this quantity. Much recent 
progress has been and is now being made in this 
area. 

In view of the fact that the chemical reactions 
and the rates at which they occur are not known 
in detail for solid propellants-nor are they likely 
to be known in the near future-the problem of 
calculating the acoustic amplification or attenua
tion experienced by a sound wave at the burning 
surface might seem to be a formidable one indeed. 
Fortunately, however, many chemical reactions 
are intrinsically very fast . It is the relatively 
slower physical processes of mass and heat transport 
which seem to be mainly responsible for the 
failure of the combustion zone to maintain its 
static equilibrium properties when subjected to 
an acoustic disturbance. This means that the 
acoustic response of the burning layer can often 
be calculated by neglecting the fact that the 
chemical reaction rates themselves are actually 
finite. The calculation becomes tractable if a 
few simplifying assumptions are made. 

The acoustic properties of the burning zone 

* In actual fact, the simple acoust ic relationship between density and 
pressure is not, in general, valid near the burning zone because t hermo
stating action of the flame zone tries to maintain isothermal rather than 
adiabatic conditions there. As a resul t , Eq. (1) is not quite correct, as 
we shall see later in more detail. 
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are to be found by solving the time-dependent 
equations expressing conservation of energy and 
mass in the solid and gas-phase induction zones.2 

(The pressure drop across these thin zones is 
very small and is neglected. We also neglect 
diffusion.) It becomes necessary to solve the 
following set of two coupled partial differential 
equations for the gas and solid phases : 

a [ aT ] a - A- - mCpT = - (CvpT), ax ax at 
(I b) 

and 
am ap 
ax at' (I c) 

where T is the temperature, A is the thermal con
ductivity, and Cp and Cv are the usual specific 
heats. Since we are here interested in the effect 
of small (acoustic) perturbations, these equations 
are to be perturbed about their steady-state solu
tions, and all second and higher order terms 
discarded. A further simplification can be effected 
by regarding the solid as rigid in comparison with 
the gas, so that Eq. (Ie) may, in effect, be dis
carded in the solid where m = m. The effect on 
the response of the burning surface of making this 
approximation has been found to be smal1.2 

The associated boundary conditions must also 
be specified for x --+ 00, for the solid-gas inter
face and for the boundary between the gas-phase 
induction zone and the gas-phase combustion 
zone (see Fig. 4). 

Since the reactions themselves are assumed 
"fast," both solid-phase and gas-phase combustion 
zones are collapsed to bounding surfaces across 
which there are discontinuities in heat flux and 
temperature gradient appropriate to the energy 
release, but no discontinuity in mass flow rate, 
m. The boundary equations for these boundaries 
each have the general form 

( A aT - mC T) 
ax p hot s ide 

- (A aT - mC T) ax p cold s ide 
(Id) 

~ -mq (T, :~), 
where q is the heat release rate per unit mass in 
the collapsed combustion zone. For small (acoustic) 
perturbations, the function q will evidently have 
the general form 

2 R. W. Hart and F. T . McClure, "Combustion Instability : Acoustic 
I nteraction with a Burning Propellant Surface," J . Chern. Phys., 30 , 
J une 1959, 1501-1514; also, J. F. Bird, L . Haar , R . W. Hart, and F . T . 
McClure, "Effect of Solid Propellant Compressibility on Combustion 
Instability," J. Chern. Phys. , 32, May 1960, 1423- 1429. 
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q = q+A(T - Tl+Bwn -GnJ. (Ie) 

where the parameters A and B are determinable at 
least in principle, from the unknown details' of 
stea.dy-state chemistry. (In practice, it is con
vement to relate the A and B describing the 
gas-phas~ ~ombustion zone to phenomenological, 
but empIrIcally determined, parameters, such as 
the pressure index n and an analogous tempera
ture index j which describes the effect of firing 
temperature of the propellant on burning rate. 
The A and B for the solid-phase combustion zone 
maybe inferred from the solid-phase activation 
energy and the zero-order type of chemistry 
usually used to characterize solid-phase reactions.) 
Insofar as the boundary condition at the solid is 
concerned, it is merely that 

T~ fe, (If) 
the firing temperature of the propellant. 

The mathematical nature of the response of 
the burning surface has now been specified in 
terms of the partial differential equations and 
the associated boundary conditions. The solution 
of these equations has been carried out elsewhere 2 

and the general nature of the results is shown ~ 
Fig. 5. Here, we note that the real part of the 
mass response term (p,/e) typically increases from 
its static zero frequency value, passes through a 
rather broad maximum, and then declines. Sub
ject to the assumptions incident to Eq. (1), we 
would expect acoustic amplification to occur 
over the broad band of frequencies where p,/e lies 
above I'""V 1/1' I'""V 0.8. Substitution of appropriate 
values for burning rate and pressure into Eq. 
(1) leads to the conclusion that solid propellants 
should be expected to be characterized by acoustic 
admittances having real parts of the order of 
10-4 to 10-6 Rayls. 

The measurement of the admittance has become 

U l-----,r-----.----~------. 
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~1.0 r_~~-~----~~-~~~~~~--J 

a (+)~ 
~ 
~ 0.6 r-------±.~~~+---~~~----l 

i=O 

fUOUfNCY tcpa' 

Fig. 5-Pressure response of four -hypothetical pro
pell.ants, each.having a pressure index n = 1/2, hut 
haVIng four dIfferent temperature indices (j = 0, 
1/2, 3/4, 1). 
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a paramount challenge to the experimental re
searcher.. There are many difficulties, primarily 
due to hIgh temperature, flow, and high pressure, 
but the first crude results are now being obtained 
at several laboratories, and they seem to support 
the general predictions of theory. It should be 
~mphasized that theory will probably remain 
mcapable of dealing accurately with the calcula
tion of burning surface response for a long time. 
Thus, the fi~al decision as to whether a given 
prop:lla~t wIll be a stable one will necessarily 
remam m the hands of the experimenter who 
measures the admittance of that propellant. 

The Norm.al Modes 

Now that the burning surface of the propellant 
has been established as a sometime amplifier of 
sound, it will be useful to look toward evaluating 
the acoustic gain-loss balance. 

From an acoustic point of view, a rocket motor 
is an acoustic cavity (cf. Fig. 8) somewhat like 
an organ pipe and possesses similar "normal 
modes" in which it may resonate. In order to 
decide whether one or more of these modes will 
be excited, it ~s necessary to consider the net flux 
of acoustic power associated with each mode. 
It is usually convenient to assume tentatively that a 
mode exists and then' to determine whether the 
net flux of acoustic power is directed out of or 
into the cavity. If the net flux vector is directed 
outward, there is a net loss of acoustic energy, 
and the mode will not be excited. 

The realistic determination of the normal modes 
presents many problems, several of which have 
not yet been solved. Let us consider the informa
tion which would have to be available to us in 
order to obtain the general solution. 

First of all, it would be necessary to know the 
speed of propagation of shear and dilatational 
waves. in the solid propellant. At first thought, 
one mIght suppose that since the solid is so massive 
and rigid with respect to the gas, the motion of 
the solid could safely be ignored and the solid-gas 
boundary could be regarded as an acoustic veloc
ity node. That this is not always the case is borne 
out both by theory and by direct measurement. 
But perhaps none of the direct measurements 
has had quite the impact of the first controlled 
experiments designed to establish the importance 
of the participation of the solid in the determina
tion of the modes. These experiments occurred 
as a result of the following considerations. 

It is clear that if the elastic motion of the solid is 
important, then the question of whether the outer 
surface of the propellant is tightly constrained or 
IS free to move will be important. Theoretical 
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Fig. 6-The effect on stability of tightness of fit of 
the propellant grain is shown here by IDean pres
sure traces at 70°F. T ype A fit is the tight fit, and 
T ype C isthecontrolled loose fit. (FroID T. Angelus.) 

study showed that looseness corresponding to 
only a few thousandths of an inch between the 
motor case and the propellant would be sufficient 
to constitute a loose rather than a constrained 
boundary condition for transverse modes. This 
simple observation is seen to have considerable 
practical importance when we recall the dis
turbing unpredictability of the instability phe
nomenon and at the same time note that the 
grain dimensIOns were not customarily controlled 
with such accuracy. In order to see whether these 
considerations could be an important source of 
test unreliability, it was suggested that experi
ments be carried out using two sizes of grains: 

1. grains which were oversize by a few thou
sandths of an inch, and could be contracted 
by cooling in order to be slipped into the 
motor and then rewarmed to achieve a 
tight fit, and 

2. grains which were undersize by an accurately 
controlled amount to achieve a reproducible 
loose fit. 

Such experiments were carried out at Allegany 
Ballistics Laboratory by T . Angelus, who found 
the striking differences in stability properties 
shown in Fig. 6.3 Subsequently, it has become well 
recognized that in order to obtain reproducible 
data it is necessary to control the fit of the grain 
with high accuracy. 

Secondly, itwould be necessary to determine the 
mean flow field of the gases, since the propagation 
of sound depends upon the velocity of the medium 
in which it travels. The determination of the mean 
flow field is primarily a problem in gas dynamics. 
Insofar as the flow in the propellant channel is 
concerned, it is frequently rather slow and seems 
to have only a minor effect on the acoustic field 
distribution, at least for relatively high frequency 
modes. Nevertheless, it may have an important 

3T . A. Angelus, "Unstable Burning P henomenon in D ouble-Base Pro
pellants," Progress in Astronautics and Rocketry , 1, Academic Press, Inc., 
New York, 1960, 527-559. 
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effect on the overall stability. 
Finally, it would be necessary to know the 

acoustic admittance characterizing the sonic 
nozzle of a rocket (and its associated cavity if there 
is one). This nozzle problem has been attacked 
theoretically by at least two fluid dynamicists,4 ,5 
but the approximations are such that it is difficult 
to have great confidence in the results except 
perhaps for quite low frequencies. Experimental 
studies of nozzle admittance are almost nonexistent, 
and that area still constitutes essentially virgin 
acoustic territory. Fortunately, the transverse 
modes are relatively insensitive to nozzle admit
tance, which is primarily a boundary condition on 
the axial component of the motion. Thus, for 
some purposes, it will be permissible to ignore the 
"end effect" arising from the finite length of the 
propellant, and pretend that the motor is in
finitely long. 

The Long Rocket Motor 

Considerable insight into the stability problem 
has been achieved by considering the limiting 
case of infinite length. In this limit, and with the 
small mean flow velocity neglected, the acoustic 
modes can be found with little difficulty. It is 
necessary only to solve the vector wave equation 
appropriate to the solid and join the solution 
properly to the solution of the simpler scalar wave 
equation for the gas. This problem has been 
studied in detail only for rather simple boundary 
conditions at the outer surface of the propellant. 6, 7 

For example, suppose that the outer surface is 
rigidly constrained, both radially and tangentially, 
and that the viscosities can be ignored. Then we 
may easily find the frequencies of the various fun
damental modes and their overtones. A typical 
result is shown in Fig. 7. The two families of dotted 
lines are the results of approximate calculations 
which aid in the interpretation of the result. The 
"quasi-gas" mode family is obtained by regarding 
the solid as infinitely rigid compared with the gas, 
and the " quasi-solid" mode family is obtained by 
regarding the gas as infinitely elastic compared 
with the solid. (The quasi-solid modes are not ex-

4 L . Crocco, "Transversal Ad mittance of de Laval Nozzles" (un pub lished 
notes). 
6 F. E. C. Culick, "Stabilit y of High Frequency Pressure Oscillations in 
Gas and Liquid R ocket Combustion Chambers" (Doctoral dissertation, 
Massachuset t s Instit ute of Technology , 1961) . 

6 F. T . McClure, R. W. Hart, and J . F. Bird, "Acous tic Resonance in 
Solid Propellant R ockets." J. Appl. Phys. , 31, May 1960, 884-896; also, 
J . F. Bird, R. W. Hart, and F. T . McClure, " Vibrations of T hick-Walled 
Hollow Cylinders: Exact Numerical Solutions, " J . Acoust. Soc. Am., 32, 
Nov. 1960, 1404-1412 ; also, J . F. Bird, "Vibrations of T hick-Walled 
Hollow Cylinders: Approximate T heory," ibid., 1413-1419. 

7 O. J . Deters, "E ffects of Gas P hase and Solid P hase Damping on Insta
bility of Low Frequency Modes in Solid Propellant R ockets," J . Am. 
Rocket Soc ., 32, Mar. 1962 , 378- 384. 
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Fig. 7-Frequencies of the lowest transverse mode 
and its first two overtones for a cylindrical grain. 

cited because they have a pressure node at the 
burning surface.) Because of the great difference 
in elastic moduli of the solid and the gas, both 
points of view are accurate for most frequencies. 
I t is only in the neighborhood of the degeneracies 
of these quasi-modes that neither will be accurate, 
and where we must have recourse to rigorous the
ory. Thus, we may note the downward trend of the 
quasi-gas modes, which reflects the fact that the 
gas region increases in diameter as the web burns, 
and of the upward trend of the quasi-solid modes 
which occurs as the diameter of the solid de
creases. The true modes split apart in the neighbor
hood of the quasi-mode crossings, as indicated by 
the unbroken curves. 

One significant result follows immediately from 
these considerations, if we recall that it is the pres
sure amplitude at the burning surface which the 
propellant can amplify. Thus, a mode will be 
stable whenever it is characterized by a pressure 
node lying sufficiently close to the burning surface, 
and these stable configurations occur in the imme
diate neighborhood of the degeneracy points. If 
the motor of Fig. 7 were oscillating in the first 
quasi-gas mode, for example, we would expect 
those oscillations to decay for web thicknesses of 
approximately 10 % and 60 % of the total web. 
The experimental data of Fig. 3 show this type of 
intermittency which is typical of many propel
lants. 

Acoustic Losses 
When the acoustic fields have been determined 

we must consider the acoustic energy balance i~ 
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order to decide whether or not the acoustic losses 
will be sufficient to insure stability. The rocket 
motor, with its possible sources and sinks of acous
tic energy, is illustrated schematically in Fig. 8. 
Each source or sink may be characterized for 
acoustic purposes by appropriate viscosities or 
admittances. 

The question of when or whether sound is 
damped or amplified in the body of gas is in some 
respects a mixed acoustic and chemical problem. 
Thus, the chemist has been concerned with the 
effect on the acoustic field of residual reactions 
in the propellant channel. But the measurement 
techniques lie predominantly in the domain of 
acoustics, and there have not yet been any re
search studies directed explicitly at measurement 
of the acoustic damping length in the hot propel
lant gases. Even the question of the relaxation 
losses to be expected in such gases remains un
resolved. There is, however, one treated aspect 
of gas phase attenuation which is relevant to the 
rocket problem, whose application leads to some 
useful insight, namely acoustic damping due to 
particles in the gas. 

Propellant gases are rarely really smokeless, 
and often contain appreciable amounts of various 
solids larger than "smoke." These particles im
pede the acoustic motion of the gas, and act to 
some extent like thermal sinks for the fluctuating 
temperature, which is a part of the acoustic field. 
The theoretical description of the attenuation 
produced by such particles was developed several 
years ago, and it is rather easily applied to the 
rocket motor problem. 6 

Little can be said quantitatively about the other 
acoustic loss mechanisms. It appears that nozzle 
loss is likely to be relatively low for the relatively 
high-frequency transverse modes, and thus one 
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ItElAXATlON AND TItANSMISSION INflUENCES 

Fig. 8-Schematic representation of a rocket motor 
showing possible sources of acoustic gains and 
losses. 
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can perhaps explain why such modes may be 
highly excited within a rocket motor without 
being dramatically audible to an outside listener. 
However, the nozzle draws attention to itself not 
only as an acoustic loss, but also as a possible 
acoustic source. In this connection, we recall 
that oscillatory motion is transported not only 
via the acoustic field at the speed of sound, but 
also via convection at the speed of the mean gas 
motion. As a result, the possibility of conversion 
of convectively transported energy into sound 
must be considered. It has been shown theoreti
cally that this conversion must occur under those 
circumstances4, 6 for which the nozzle is charac
terized by an admittance having a negative real 
part. Under such circumstances, even the condi
tion that pi E be less than ,.."d / 'Y is not necessarily 
sufficient to insure acoustic stability. 

The thermal and viscous losses a t the motor 
walls should receive consideration, although 
relatively little wall surface is exposed in motors of 
practical geometry. Theoretical calculation of 
such losses is straightforward in systems for which 
the mean temperature of the walls and the mean 
temperature of the gas are equal. This condition 
is not met in the usual rocket motor, however. 
In fact, one can hardly be certain that the effects 
will correspond to losses, since there is the possi
bility of conversion of convectively transported 
energy into sound in the boundary layer. 

Finally, in order to specify the losses in the solid, 
at least the frequency-dependent shear and dilata
tional viscosities are required, and some data on 
the shear viscosities of propellants have started to 
appear very recently.8 There has been almost no 
application of predominantly acoustic techniques 
to this problem. 6, 7 

Stabili ty Determination 

The question of stability or instability has been 
discussed quantitatively in terms of a rather com
plicated equation which expresses the net of the 
gains and losses as the sum of all of the various 
contributions from the various surfaces, and from 
the volume of the gas and the solid. 

Since, as has been discussed, many of the param
eters necessary for the evaluation of the stability 
criterion are not yet known, it is possible to discuss 
the problem analytically only for certain special 
cases. For illustrative purposes, let us consider the 
stability in the first transverse mode of a long 
motor in which gas phase relaxation or particle 

8 W. G. Brownlee and F. E. Marble, "An E xperimental Investigation of 
Unstable Combustion in Solid Propellant R ocket Motors," Progress in 
Astronautics and R ocketry, 1, Academic Press, Inc. New York, 1960, 
455-494. 
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Fig.9-Neutral stability contours corresponding 
to various kinds of damping mechanisms. The 
arrows point into the unstable region. 

damping might be the major sources of attenua
tion. Then it is possible to estimate the loss terms. 
Further, we shall confine our attention to a rela
tively narrow band of frequencies wherein the ad
mittance of the burning surface might be re
garded as a constant. The result is shown by Fig. 
9. 9 We should note that at the instant of firing, 
the initial values of port diameter and burning 
surface area define a starting point on the K n , 

Dp chart. As the propellant bUrns, both Dp and 
Kn increase linearly with time, and the instan
taneous configuration of the motor describes a 
straight line passing through the initial point and 
through the origin. On the other hand, if smoke 
damping were predominant, and if the initial 
Kn , Dp were to lie below the smoke-damping 
line, the motor would be unstable throughout 
its firing, whereas it would remain stable if its 
geometry placed its initial chart-point above this 
line. It is interesting that precisely such a straight 
neutral stability line was observed in the experi
ments of Brownlee and Marble. 8 On the other 
hand, if damping by particles were predominant, 
the motor would be unstable initially but would 
become stable when its chart-point crossed the 
corresponding curve. 

Further Considerations 
In the attempt to gain an overall picture of 

rocket instability, many interesting and important 
aspects of the problem have necessarily been 
omitted. The mean flow field, for example, has 
associated with it a number of effects other than 
its influence on orifice loss which has already been 
mentioned. Here are two other consequences of 
mean flow which should be considered. 

9 J . F . Bird, F. T . McClure, and R . W. Hart, "Acoustic Instability in the 
T ransverse Modes of Solid Propellant R ockets," 12th International 
Astronautical Federation Congress, Washington , D. C., Oct. 1- 7, 1961. 
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ENTROPY WAVES-It has already been mentioned 
that the slow mean flow in the propellant channel 
will usually have little effect on the dynamical field 
of the relatively high-frequency transverse modes. 
Perhaps surprisingly, the state of affairs is quite dif
ferent at low frequencies because of a boundary 
layer effect. We will recall that sound waves are 
isentropic disturbances, and thus the local gas 
temperature fluctuates in accordance with the 
adiabatic relationship 

oT 
T 

'Y - I op 
----

'Y P 
(2) 

However, the boundaries tend to be rather more 
isothermal than adiabatic, so that the dynamical 
field in the immediate neighborhood of a boundary 
is not describable in terms of the usual sound field. 
As a result, there is an acoustic boundary layer 
which, in effect, separates the actual boundary 
from the purely isentropic sound field (cf. Fig. 10). 
Thus when a sound wave is incident on the 
boundary, not only is a reflected sound wave 
produced, but also a thermal "wave" or front. 
In the usual acoustic circumstances, this thermal 
front disappears in the immediate vicinity of the 
boundary. (The boundary layer thickness in a 
nonflowing gas is associated with a characteristic 
length for conduction of heat into the boundary, 
and the layer is very thin.) This length is VA/ 2wCvp 
1"-1 10-3 cm for thermal conductivity A = 5 X 10-4 

(cal/sec cmOK), w = 277" X 1000 cps, p = gas 
density 1"-1 6 X 10-3 gm/ cm3, and Cv = heat ca
pacity 1"-17§ (cal/gm OK). However, in the presence 
of a mean flow out of the surface, the boundary 
layer can become quite thick. For typical flow 
velocities, its thickness is indicated by the charac
teristic length 'YCvPV3/AW2 1"-1 1 meter at a fre
quency of 200 cps. In this low frequency domain, 

SOLIO 'HASE 
CHEMICAL 

UACTIONS 

GAS PHASE 
CHEMICAL 

liE ACTIONS 

Xo ' Xl 'x~ --------------------.-----------SOllO ,..ASE GAS 'HASE ACOUSTIC 
COMIUSTION COMIUSTION SU8· 

IOUNOAIIY SUI· lOUNDAIIY 
LA YEll I~:V~:IIY lA YEll 

CO~OSITf GAS lOUNOAIIY lA YU 

ACOUSTIC WAVES 
ISENTROPIC 
MECHANICS 

Fig. lo-Schematic representation of the gas-solid 
boundary region. 
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Fig. ll-The effect of entropy wave generation on 
amplification by the burning propellant. Amplifi
cation occurs above the X-axis. 

the entire rocket motor channel may be included 
within the acoustic "boundary layer!" The ther
mal "front" has been modified by flow to become 
an entropy wave which propagates at essentially 
the speed of the mean flow. Since its speed is per
haps one-thousandth that of sound speed in the gas, 
the wavelength of these entropic waves is very 
short. These waves are characterized by oscillations 
primarily in temperature and density, and thus 
tend to be observable visually in rocket motors 
as thin striations in brightness which propagate 
away from the propellant surface with the flow 
speed. 

Even in the moderately high-frequency regime 
where the acoustic boundary layer is thin, its 
effects do not vanish. We find that the relation
ship between the mass response of the propellant 
and the acoustic admittance is not really given by 
so simple a relationship as that of Eq. (1). The 
correct relationship is not difficult to obtain, 1 0 

but it involves frequency, flow rate, and tempera
ture gradient at the boundary in a rather com
plicated way. However, the expected effect of the 
acoustic boundary layer on the acoustic admit
tance of the burning layer is shown by the sample 
calculation in Fig. 11. In this figure, the quantity 
y represents the dimensionless reduced specific 
admittance obtained by dividing out the factor 
- Vp / p. As we should expect, the low frequency 
values could be obtained by replacing the I/ 'Y 
in Eq. (1) by unity (the dot-dash curve corre
sponds to Eq. (1)). The domain of interest is the 
Real of y ~ 0, so we see that, at least in this 
example, the inclusion of the acoustic boundary 

10 R . W. Hart and R . H . Cantrell, "On Amplification and Attenuation 
of Sound b y Burning Propellants," T he J oh ns Hopkins University, 
Applied Physics Laboratory, T G 335-11, April 1962. 
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layer would have a minor effect on the frequency 
region in which instability might occur. 

EROSION AND SOME NONLINEAR ACOUSTICS

The burning rate of propellants is affected not 
only .by pressure but also by the component of 
VelOCIty parallel to the surface. In early experi
ments, it was found that the presence of such a 
parallel ve!ocity component increased the steady
state burmng rate, hence the terminology "ero
sion" and the reference to this velocity as the 
"erosive velocity" (ve). In general, a linear rela
tionship between burning rate (m) and erosive 
velocity (ve) exists over a fairly wide velocity 
rang~, so that the steady-state burning is often 
descnbed by the equation 

Tii = (function of pressure) {I + K I :' I}, (3) 

where c is the sound speed, and K is a dimension
less constant (usually found to be less than about 
5) called the erosion constant. The absolute value 
sign describes the fact that the effect of erosive 
velocity is independent of its direction. 

Now it is clear that the acoustic response of the 
burning surface to erosive velocity should be 
studied in order to be able to describe further 
Jhe ability of the propellant to amplify. From the 
experimental point of view, the measurement of 
this response seems to fall in the domain of the 
acoustician, although none have so far tackled this 
problem. From the theoretical point of view, the 
erosive response calculation appears to be funda
mentally two-dimensional and thus should prove 
to be more difficult than the essentially one
din:ensional calculation of the pressure response 
whIch we have already considered. 

It seems instructive to evaluate the possible 
importance of erosive effects on acoustic stability. 
~his can readily be done if we carry over the 
lmear form of Eq. (3) into the time domain and 
introduce a frequency-dependent erosion con
stant. 11 

One conclusion becomes evident immediately: 
where the mean flow velocity is zero, or where the 
e~osive component of acoustic velocity is perpen
dIcular to the mean flow (as it would be for trans
verse modes in the motor of Fig. 8), the absolute 
value sign indicates that rectification occurs and 
thus no erosive response would occur at the f~nda
mental frequency. Since no acoustic energy would 
be erosively coupled into the normal mode ero
sion would then only be a producer of har~onics 
(and changed mean burning rate). 

11 F . T. McClure, J. F. Bird, and R. W. Hart, "Erosion Mechanism for 
Nonlinear Instability in the Axial Modes of Solid Propellant R ocket 
Motors," J. Am. Rocket Soc., 32, Mar. 1962,374-378. 
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But for an axial mode, the acoustic velocity 
adds and substracts from the axial mean flow and 
for arbitrarily small acoustic velocities, th~ ab
solute magnitude sign may be removed. In this 
case, erosion could influence linear acoustic 
stability. In order for such an influence to occur 
however, there must be a component of respons~ 
in phase with pressure. In the usual single-ended 
rocket motors, the mode symmetry is such that 
erosion produces amplification in alternate quar
ter-wave segments and attenuation in the inter
mediate segments, so that the net effect tends to 
cancel out. 

These considerations suggest an interesting 
consequence of finite amplitude, however, where 
rectification may occur in only that part of the 
motor where the mean flow is small. Amplifica
tion or attenuation would pertain elsewhere. 
!hus, if ~he f~rw~rd half of the motor were damp
mg for mfimtesimal fluctuations, and the rear 
half were an erosive amplifier, one would find a 
net amplification at amplitudes high enough that 
rectification occurred in the front end only. 

Fortunately, this is one type of nonlinear problem 
which is not difficult to treat. The reason stems 
from the fact that the boundary equation (3) in
troduces the nonlinearity as a term of order 
vlve , rather than as a term of order vic. This 
means that the acoustic wave equation for the 
gas, wherein the nonlinear terms are much smaller 

6.0 r--------------------. 

5.0 

'.(f-+) = -0.15 

1.0 

°0~--------~0~.2~5-----------0~.~----------~0.75 

Fig. 12-The effect of finite amplitude and erosion 
on stability in axial modes for a hypothetical pro
pellant. The ratio of acoustic pressure amplitude 
to the mean pressure is Q. and the port Mach 
number is M p • 
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TABLE I 

IMPORTANT PARAMETERS REQUIRED FOR STABILITY DETERMINATION* 

Quantity Mechanism Function of 

Admittance of burning Amplification or attenuation at Frequency, pressure , pro-
layer the burning surface pellant temperature, 

erosive velocity 

Gas-phase damping length Amplification or attenuation in 
Propellan t composition , 

or attenuation coefficient the gas phase 
curing time, method 
of cure, etc. 

Frequency , pressure, pro-
Solid-phase viscoelastic Contributes to d etermining pellant temperature 

constants mode frequencies and to at-
tenuation in the solid phase 

Nozzle admittance Contributes to determining Frequency , mode, m ean flow distribution, nozzle 
mode frequencies and to gain size and shape, sound velocity in gas, and the 
or loss at the nozzle plane sound field itse lf 

• Ot her parameters as well , such as t hose describing wall losses , resonant rod losses, inputs due to aerodynamic screaming, etc., may oc
casionally be important. 

(of order vi c), may correctly be regarded as linear. 
Because of this, it is permissible to ignore the per
turbing effect of erosion on the normal mode and 
to evaluate the net flux of acoustic power by essen
tially the same procedure that was applicable to 
the infinitesimal amplitude case. Focusing our 
attention on the burning surface response to 
erosion by ignoring other gains and losses, we 
calculate the behavior shown in Fig. 12.11 This 
figure shows, for example, that if the pressure 
response of the burning surface were given by 
il/ f. - 1/'1' = - 0.15 and if the imagiIiary part 
of the erosion constant were -1.8/ c, then the 
surface would amplify and the motor could be
come unstable if the quantity 'I'M p/rrQ < Y2, 
i.e., if it were subjected to a disturbance having a 
maximum fractional pressure amplitude Q > 
2'YM p/rr, where M p is the port Mach number. 
For M p = . 0.025, 'I' r'-I 1.2, we would expect 
instability if the disturbance pressure amplitude 
were greater than 2 % . of the steady-state pressure. 
Perturbations of this order of magnitude may 
sometimes be encountered in practice, and there 
is some qualitative experimental support for the 
pertinence of these calculations. Quite obviously, 
however, there are still too many unresolved 
pieces of the complete stability problem to permit 
really quantitative calculations to be made. 

Resume 

I t will be apparent from the preceding de
scription that theoretical studies have met with 
an encouraging degree of success in discerning and 
illuminating critical features of rocket motor in
s·tability. Concurrently, experimental studies have 

18 

progressed in elegance and in their pertinence to 
the basic description of instability. The scope of 
the problem is becoming fairly well described, 
but it is by no means solved. There are many 
critical unknowns and a spectrum of associated 
aspects which have not been studied under con
ditions such as exist in rocket motors. 

Some of the factors which are clearly impor
tant are collected for review in Table I. Their 
relevance to the field of acoustics is quite evident, 
and they may provide problems of considerable 
challenge. 

There are other factors which are perhaps of 
less immediate importance, but which in any 
case provide puzzling acoustic problems. For 
example, there is the problem of the accurate de
termination of acoustic modes, taking into account 
realistic mean flows and the entropy waves. The 
theoretical study of finite amplitude effects in 
rocket motors is still virtually untouched. In this 
connection, it has been reported that steel rods 
have "burned" away at the rate of 1.0 in. per sec 
in the high-amplitude acoustic environment, but 
the mechanism is not yet understood. It might 
even be useful merely to clarify quantitatively how 
it is that virtually monochromatic acoustic fields 
with fluctuating pressure amplitudes of the order 
of 50 psi sometimes exist when in more reasonable 
environments such waves quickly degenerate as 
wave form distortion arid harmonic generation 
set in. 

Hopefully, in addition to presenting a picture 
of the progress in our understanding of acoustic 
instability in solid propellant rockets, we have also 
conveyed the impression that here is a new and 
important field open to acousticians. 
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